Computational pipeline for face analysis

Prof. Yosi Keller

Faculty of Engineering, Bar-Ilan University

- Applications of face analysis
- Why is face analysis (relatively) easy?
- Face analysis pipeline
- What are we doing?
- Future applications

- Face recognition
- Gender estimation
- Ethnicity estimation
- Age estimation
- "Spacial" face similarity
 - Kin estimation
 - High/Low resolution face estimation
- Facial expressions

Why is face analysis (relatively) easy?


The most difficult attribute of visual recognition is the visual variability Best detection results VOC 2007:

- Girshick et al. 2014: mAP of 53.3%
- Oxford VGG 16-layer network mAP of 66.0%

The variability of faces is mostly geometrical and parametric

Classical work of Viola–Jones 2001:

- Fast and accurate
- Available in OpenCV and Matlab
- Can be improved using extra features
- Coarse estimate "one size fits all"

Face alignment

"Supervised Descent Method and its Applications to Face Alignment", Xiong and De la Torre, 2013 Very fast and accurate:

- Compute (SIFT/Hog/LBP) descriptors at 49 points: x
- **2** Regression: $\Delta = \mathbf{A} \cdot \mathbf{x}$
- The regression matrix is learnt.
- Runs at 60 FPS
- Extensions: regression tree and binary features
 - "Face Alignment at 3000 FPS via Regressing Local Binary Features", Ren et al., 2014
 - "One Millisecond Face Alignment with an Ensemble of Regression Trees",Kazemi et al., 2014

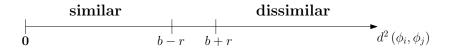
Our research: improve the convergence range Show video

Pose estimation and 3D alignment

- Each point has a "name"
- Classical pose estimation: Perspective-n-Point problem (PnP) Posit

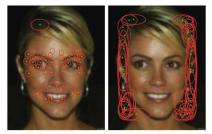
- Given the pose, the face image is rendered on the 3D model
- The 3D model can be rotated
- Missing parts added using symmetry
- Can be used for analysis

Tal Hasser¹ Shai Hard¹ Tan Paz¹ Acoe Enbu² ¹ Propus Usaray r Jana ² Anor ² Anor


Effective Face Frontalization in Unconstrained Images

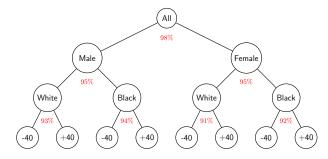
- Dense LBP, HOG, SIFT
- Face specific features: Weber Local Descriptor (WLD)
- Deep learning
 - Representation learning requires a large training set
 - Task specific refinement

- Can be applied directly
- The last layer in a deep network

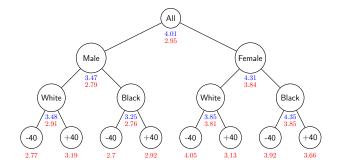

Learn a linear projection using margin maximization

$$d_{\mathbf{W}}^{2}\left(\boldsymbol{\phi}_{i},\boldsymbol{\phi}_{j}\right) = \left\|\mathbf{W}\boldsymbol{\phi}_{i}-\mathbf{W}\boldsymbol{\phi}_{j}\right\|_{2}^{2}$$

Distance learning II


Activations for recognition (from Fisher Vector Faces in the Wild)

Application	Same	Not same	Learning	Accuracy
Verification	$name_i = name_j$	name _i ≠ name _i	overfit	99%
Age estimation	$ age_i - age_j \leq T$	$ age_i - age_j > T$	generalization	3 years
Gender	$gender_i = gender_j$	$gender_i \neq gender_j$	generalization	98%
Ethnicity	$ethnicity_i = ethnicity_j$	$ethnicity_i \neq ethnicity_j$	generalization	98%


Face hierarchies I

- It is difficult to learn a classifier/regressor on a heterogeneous dataset
- Common solution split data to folders and learn a set of classifiers/regressors
- Faces have a natural hierarchy based on: gender, ethnicity, age

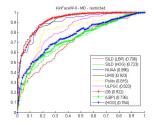
Example of age estimation (Mor,Keller2014)

Face hierarchies II

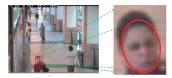
Algorithm	MAE	
KNN	6.26	
PLS	4.56	
KPLS (Guo 2011)	4.18	

"Spacial" face similarity: non-identical twins I

So far we considered


$$d_{\mathbf{W}}^{2}\left(\boldsymbol{\phi}_{i},\boldsymbol{\phi}_{j}\right)=\left\|\mathbf{W}\boldsymbol{\phi}_{i}-\mathbf{W}\boldsymbol{\phi}_{j}\right\|_{2}^{2}$$

But, there are other problems


$$d_{\mathbf{W}}^{2}\left(\boldsymbol{\phi}_{i},\boldsymbol{\phi}_{j}\right)=\left\|\mathbf{W}_{o}\boldsymbol{\phi}_{i}^{o}-\mathbf{W}_{y}\boldsymbol{\phi}_{y}^{y}\right\|$$

"Spacial" face similarity: non-identical twins II

Mahpod, Keller 2015, FG2015

Similar problem

Yuen,Zou2012

But, we can use multiple low-resolution images

- New technology many potential applications
- Preprocessing infrastructure is important: alignment, frontalizations, features, etc.
- Some face analysis requires multiple images
- Temporal analysis: RNN, HMM
- Psychological analysis ("poker face")