Advances and Challenges of Computer Vision in Agriculture

Victor Alchanatis, D.Sc. Director, Institute of Agricultural Engineering, ARO - The Volcani Center

Agricultural Research Organization

The Research Arm of the Ministry of Agriculture

Vision Statement

Excellence in research and development for the promotion of agriculture and the protection of the environment

RESEARCH CENTER - NEVE YAAR

RESEARCH CENTER – GILAT

PERSONNEL

200 Scientist (PhD)

- ~390 Research Assistants, Technicians
- ~140 Administration Staff
- ~240 Graduate Students
- ~ 40 Foreign Visiting Trainees

Funding

Government ~ 60% Competitive granting agencies – 32% Industry R & D projects – 8%

Institute of Agricultural Engineering

- The only research organization in Israel whose activities encompass a wide range of <u>engineering</u> and technological topics relating to <u>all</u> aspects of <u>agriculture</u>.
- About 60 people, including 14 research scientists

Improved Efficiency Number of people fed by one farmer

then a start	In 1955	15	****
738	In 2000	90	**************************************

	In 2015	400	

			IMVC°2015.

Percent Of US Workforce in Agriculture, 1870 to 2002

Evolution of Productivity in Agriculture and Other Sectors

Unstructured Environments

- Unknown a-priori
- Unpredictable
- Dynamic

Unstructured Environments

 The terrain, vegetation, landscape, visibility, illumination and other atmospheric conditions are not well defined; vary, have inherent uncertainty, and generate unpredictable and dynamic situations.

Unstructured Objects

Variable and non-uniform:

size

shape

color

texture location

- Livestock and aquaculture
- Grading and sorting
- Field crops and orchards
- Precision agriculture
- ... and many more
- ... greenhouses
- ... storage
- ... consumers
- ... etc.

Computer vision technology for automated lameness assessment

- What is lameness?
 - <u>deviation in gait and posture</u> due to <u>pain or</u> <u>discomfort</u> resulting from <u>hoof and leg injuries and</u> <u>diseases</u>.

2D RGB computer vision

2D Video preprocessing

C:\NotSynchro\videos\setup.avi

Back spine extraction

Algorithm output

Back Posture Measurement BPM

Comparison of a threedimensional and twodimensional camera system for automated measurement of back posture in dairy cows

Computers and Electronics in Agriculture Volume 100 2014 139 - 147

Variables θ 1, θ 2, θ 3 and L1 extracted from the reconstructed back curvature of the cow.

Algorithm Verification II

Automatic body condition scoring

The Problem

- Manual
 - -Hard work
 - -Labor & Time consuming
- Subjective
 - Technician
 - -Previously seen
 - cows

Machine Vision

. . . .

Machine Vision

Cow contour:

- Interpolation 1000 points
- Scaling to 0-1 range
- 5 anatomical points and 5 angels
- Horizontal and vertical distance
- 1 dimension curve
- PCA Analysis
- Fast Fourier transform

Fourier descriptors

Bercovich, Maltz et al., Halachmi, I Journal of Dairy Science. 2013 ; 96(12):8047-59

DEVELOPMENT OF A SELECTIVE FISH HARVESTING SYSTEM FOR PONDS

OBJECTIVE

To develop a system for continuous, automatic and selective live fish harvesting in ponds

(Lt-Ls)/Lt~ 0.4 (Lt-Ls)/Dp>0.5 Tmin/Tmax < 1

Ornamental fish

Counting of fishlets

Digital Camera

Plate with fishlets

Counting of fishlets

Quality evaluation

Detection of diseases in potatoes

Guy Shani, Lea Tsror, Victor Alchanatis, 2014

Application for mobile phone

Detection of diseases in potatoes

Agricultural produce classification

Tomatoes Defects

On-line adaptive classifier

Pattern Recognition, 2012. 45 (7), pp. 2843-2853

Evaluation of apple flowering intensity using color image processing for tree specific thinning

The process..

Process for buds

Process for flowers

Autonomous greenhouse spraver

amar elshte

Decision Tree - CART Breiman et al., 1984

For all features

Find feature threshold value that maximizes the "splitting criterion"

Among all features Choose the one that maximizes the "splitting criterion"

Judges Vote (~ Majority rule)

- A customized CART variation, developed in this research
- A *"Judge"* is single level CART (root node only)
- Classification rule:

Judges _Vote Number _ of _ Judges Vote (M) 2 2 Judges (N)

Obstacle detection in a greenhouse environment using the Kinect sensor

• A robotic manipulator (MH5L, Motoman).

- A custom-made end-effector.
 - Sensory apparatus.

Precision agriculture and remote sensing

Leach in drippers...

Vineyard, Upper Galilee, summer 2005

Automatic leak detection

- Blue cross shows correctly detected leak.
- Red crosses mark other areas suspected for leaks

Irrigation malfunctions – ground truthing

Irrigation malfunctions – ground truthing

Data from scouting

Automatic recognition

ndex		х	у	Туре
	1	268135.5	741497.6	Low
	2	268139.7	741535.4	Low
	3	268141.5	741588.6	Low
	4	268141.8	741593.8	Low
	5	268146	741595.9	Low
	6	268146	741560.9	Low
	7	268147.1	741493	Low
	8	268149.9	741595.6	Low
	9	268151.3	741495.1	Low
	10	268154.1	741595.2	Low
	11	268154.1	741558.8	Low
	12	268154.8	741529.8	Low
	13	268157.9	741594.9	Low
	14	268161.8	741594.5	Low
	15	268162.8	741531.5	Low
	16	268165.6	741594.2	Low

h

Automatic recognition

Detection accuracy of visible leaks

Analysis of Thermal Images

Canopy segmentation (Matlab)

• A watershed image processing algorithm was employed to the thermal image to outline the palms canopy.

Results - Map of water status

Maps of irrigation status based on temperature, for each site. The dashed borders delineate sub-plots irrigated with 100% of the recommended amount (sp-100%); the continuous borders delineate those under 20% deficit irrigation (sp-20%).

Cotton

LWP Map in Givat-Brener Field (11/08/13)

> Algorithms for delineation of uniform management zones

- •Weeds tend to grow in patches.
- Selective herbicide application.
 - Cost saving.
 - Environmental benefits.

Detection of weeds in high resolution images

- RGB images from UAV (Unmanned Aerial Vehicle) or ground vehicles (tractors)
- High resolution images.

Mechanical within-row weed control for transplanted crops using computer vision

Biosystems Engineering, Volume 99, Issue 2, 2008, 171 - 178

Mechanical within-row weed control for transplanted crops using computer vision

Biosystems Engineering, Volume 99, Issue 2, 2008, 171 - 178

Classification of crops and weeds extracted by active shape models

Biosystems Engineering, Volume 99, Issue 2, 2008, 171 - 178

Vision-based approach to differential spraying in precision agriculture

Computers and Electronics in Agriculture, Volume 60, Issue 2, 2008, 144 - 155

Vision-based approach to differential spraying in precision agriculture

Computers and Electronics in Agriculture, Volume 60, Issue 2, 2008, 144 - 155

Image acquisition

- Navigation of tetracopter
 - Autonomous navigation and acquisition
 - Height: 88m
- High resolution color camera:
 - Canon EOS Kiss X4, 5184 x 3456 pixels, exposure: 1/1000, f/7.1, ISO 200
- No mosaicking

Sample image

- Image resolution: 1cm/pixel
- Image area: 50 x 35 m

Levels of weed infestation

2 - medium

3 - high

1- clean

Application Interface

Classified Image

C. rotundus-Single C. rotundus-Cluster Broadleaved Weeds

Cotton -Single

Cotton -Cluster

Mixture Shade

Weed Map - Alonim 2.2

327227

327222.

327216

Weed Map

Number of narrow leaf weeds per Image.

Area of narrow leaf weeds per image.

Number of broad leaf weeds per Image.

Area of broad leaf weeds per image.

Weed Map - Alonim 2.2 c.r. area

327232

327227

327222.

327216

Weed Map

Number of narrow leaf weeds per Image.

Area of narrow leaf weeds per image.

Number of broad leaf weeds per Image.

Area of broad leaf weeds per image.

Weed Map - Alonim 2.2 b.l. number

327232

327227

327216

Weed Map

Number of narrow leaf weeds per Image.

Area of narrow leaf weeds per image.

Number of broad leaf weeds per Image.

Area of broad leaf weeds per image.

Weed Map - Alonim 2.2 b.l. area

327232

Weed Map

Number of narrow leaf weeds per Image.

Area of narrow leaf weeds per image.

Number of broad leaf weeds per Image.

Area of broad leaf weeds per image.

Summary

Machine vision gets increasing attention in agricultural applications

• Livestock and aquaculture

Precision Livestock Farming – PLF

- Produce sorting and grading
- Precision Agriculture PA
 High resolution images

Questions...

TARGET CONFERENCES