

Technion - Israel Institute of Technology Computer Science Department

Multi-region active contours with a single level set function

Anastasia Dubrovina

Joint work with Guy Rosman and Ron Kimmel, Technion

Israel Machine Vision Conference - IMVC

March 2015

Image segmentation - motivation

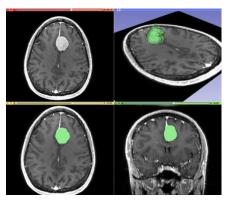
- Object detection and classification
- Action classification
- Scene understanding

(a) Image

(b) Object segmentation

(c) Class segmentation

PASCAL Visual Object Classes Challenge


Object tracking

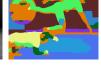
Etc.

Medical imaging

Ron Kikinis

Existing approaches

- Unsupervised methods
 - Active contours
 - Probabilistic clustering
 - **Greedy algorithms**
 - Graph-cut based methods
 - Convex relaxation methods
- Learning approaches
 - Supervised contour detection
 - Deep neural networks (DNN)



Comaniciu&Meer'02

Chambolle&Pock'09

Felzenszwalb& Huttenlocher'04

Boykov et al.'12

Bae, Yuang, Tai'11

Arbela'ez et al.'11

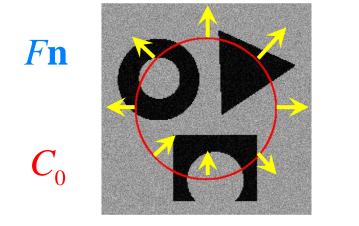
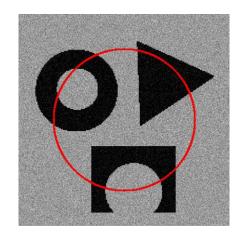
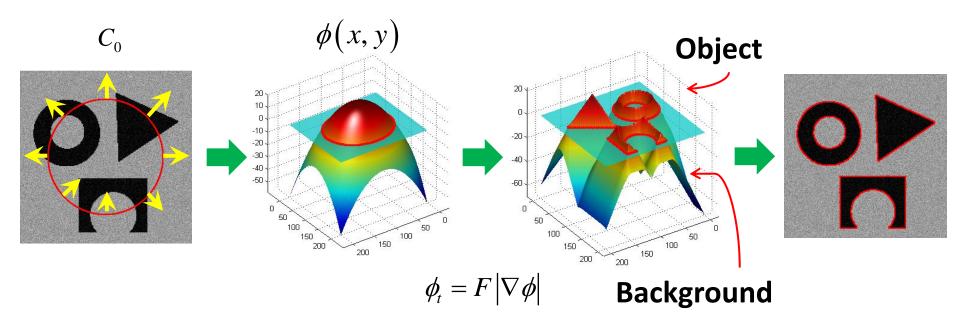

Socher et al.'11

Image segmentation using active contours

Consider an energy functional (segmentation criterion)


$$E(C) = E_{\text{data}}(C) + E_{\text{regularization}}(C)$$

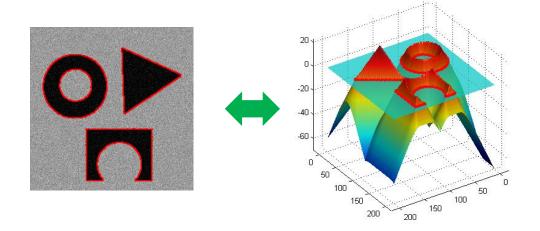
• Deform initial contour $\,C_{_{\! 0}}$ to $\,$ minimize $\,$ the energy $\,E(C)\,$



$$C_{t} = F\mathbf{n}$$

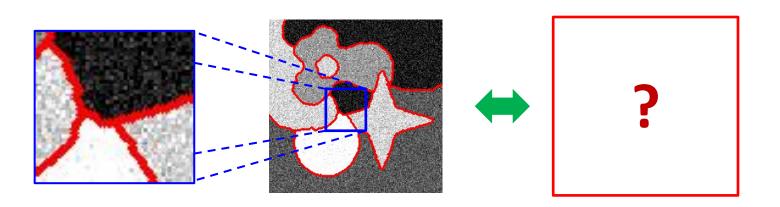
$$F \triangleq -\frac{\delta E(C)}{\delta C}$$

Level set approach for active contour evolution


Object =
$$\{Level \ set \ function > 0\}$$

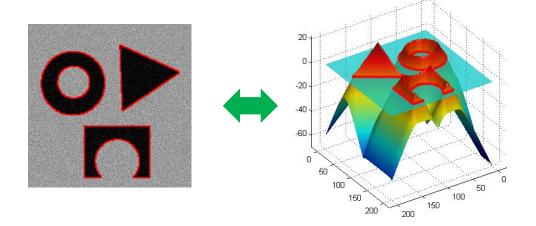
Background = $\{Level \ set \ function < 0\}$

2-region image segmentation!


Multi-region segmentation using level sets

Images with 2 regions

```
Object = \{Level \ set \ function > 0\}
Background = \{Level \ set \ function < 0\}
```



Generalization to multiple / overlapping regions is not immediate

Multi-region segmentation using level sets

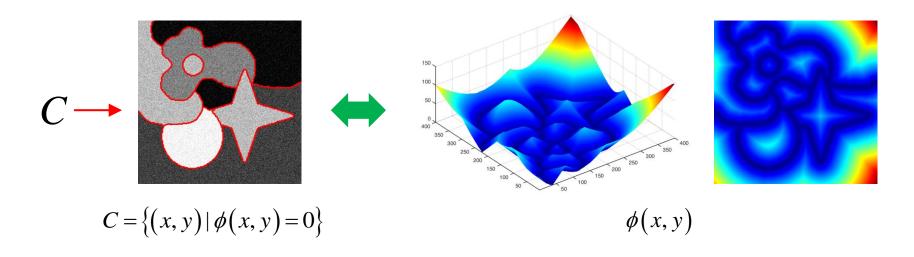
Images with 2 regions

Object =
$$\{Level \ set \ function > 0\}$$

Background = $\{Level \ set \ function < 0\}$

- Generalization to *multiple / overlapping* regions is not immediate!
- Previous work
 - Zhao'96, Yezzi'99, Samson'00
 - Tsai'01, Vese'02, Brox'06
 - Lie'06, Bae'09

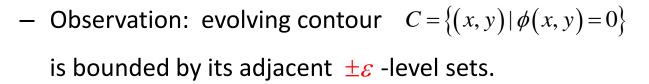
Multiple level set functions

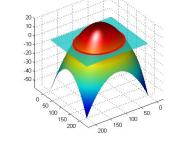

Single piecewise-constant function

Specific (piecewise smooth) model 🕾

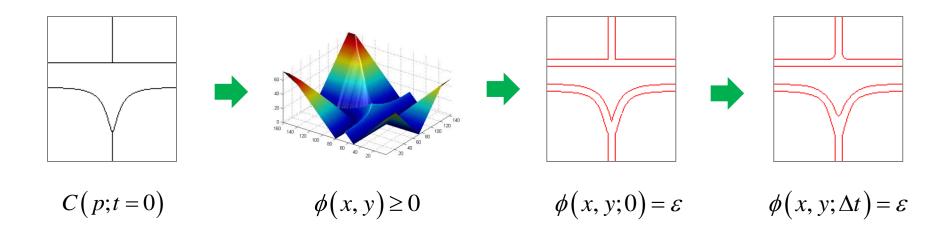
Multi-region segmentation – proposed approach

- We suggest
 - New generalization to multiple / overlapping regions
 - Using a **single** level set function $\phi \ge 0$

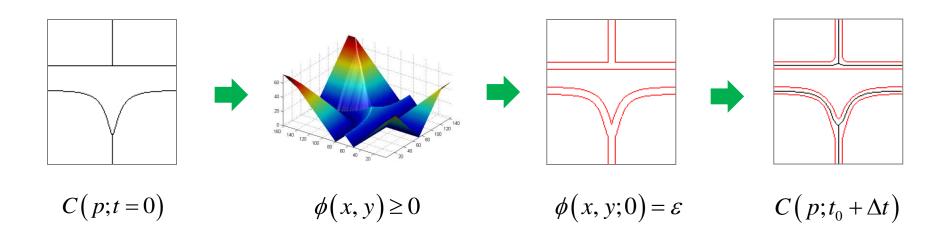

minimize
$$E(C) = E_{\text{data}}(C) + E_{\text{regularization}}(C)$$


by

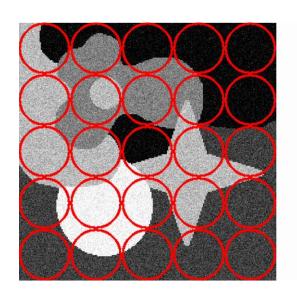
$$\phi_{t} = F |\nabla \phi|$$

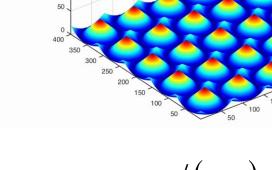

Multi-region level set evolution using VIIM

"Voronoi Implicit Interface Method (VIIM) for multi-phase level set evolution"
 R.Saye & J.Sethian, PNAS'11, Science'13



- When describing C with a <u>single</u> level set function $\phi(x,y) \ge 0$


Multi-region level set evolution using VIIM

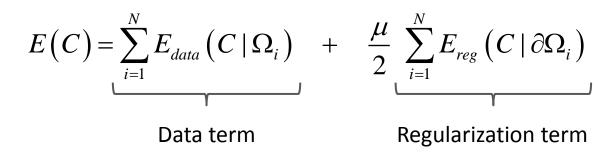

- "Voronoi Implicit Interface Method (VIIM) for multi-phase level set evolution"
 R.Saye & J.Sethian, PNAS'11, Science'13
 - Observation: evolving contour $C = \{(x, y) | \phi(x, y) = 0\}$ is bounded by its adjacent $\pm \varepsilon$ -level sets.
 - When describing C with a <u>single</u> level set function $\phi(x, y) \ge 0$

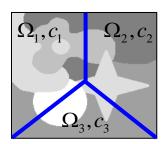
Contour evolution illustration

100

$$C = \{(x, y) | \phi(x, y) = 0\}$$

$$\phi(x,y)$$


Multi-region segmentation models


- Piecewise constant model (Mumford-Shah'89,Chan-Vese'01)
 - In each region, image intensity values are constant
- Region competition model (Zhu&Yuille'96)
 - In each region, image intensity values were generated from different pre-specified probability distributions
- Region dissimilarity models (Bertelly'08, Jung '12)
 - Maximal pairwise similarity between image pixels inside each region, and minimal similarity across different regions

Different measures of region homogeneity

Multi-region segmentation models

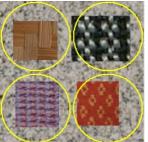
Generic segmentation model

- ❖ Multi-region piecewise constant model (Mumford-Shah'89,Chan-Vese'01)
- Region competition model (Zhu&Yuille'96)
- ❖ Region dissimilarity models (Bertelly et al.'08, Jung et al.'12)
- E(C) is minimized using a generic evolution rule (see

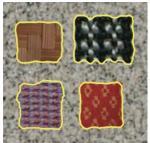
"Multi-region active contours with a single level set function", Dubrovina, Rosman, Kimmel, TPAMI, 2015)

Segmentation results – Berkeley Segmentation dataset

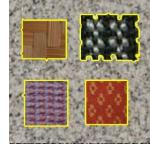
Piecewise-constant model, different algorithm parameters



Piecewise constant and region competition models


Results with region dissimilarity model

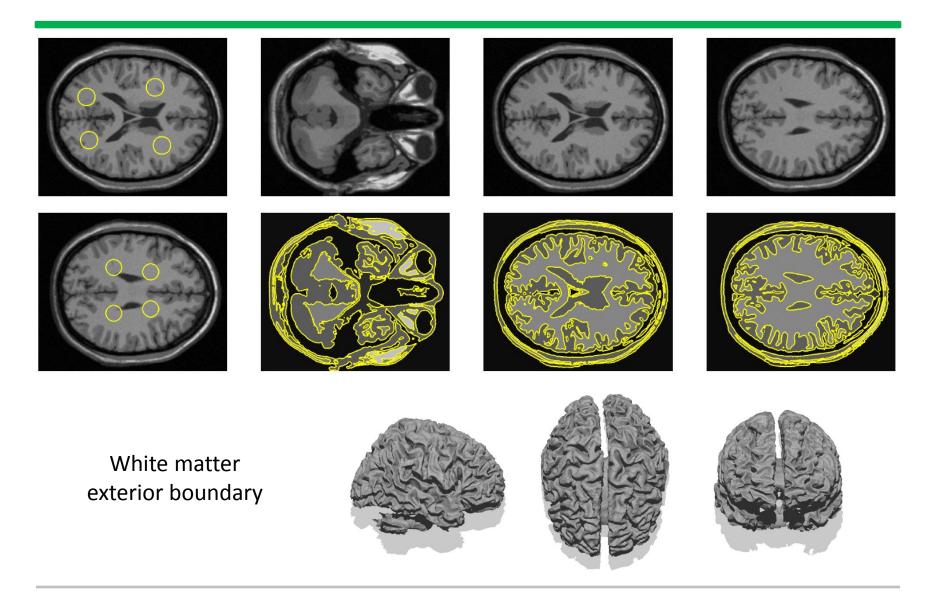
Original image



Results of Jung et al.

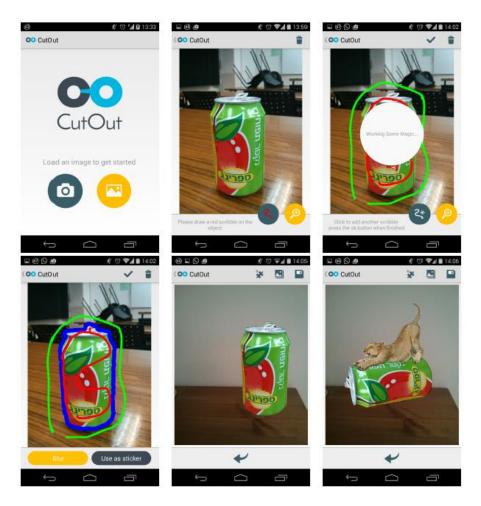
Results of Bertelli et al.

Proposed method



Original image

Proposed method


3D segmentation using Active Surface Model

Conclusions

- The presented method for multi-region segmentation using active contours and the level set framework
 - ✓ Is unsupervised
 - ✓ Does not require knowing number of regions in advance
 - ✓ Performs contour evolution implicitly, using a single level set function (using the VIIM)
 - ✓ Is applicable with various segmentation models, for both 2D and 3D image segmentation
- Lastly, a short promo...

Promo: mobile app for image segmentation

CutOut: by Elad Richardson, co-supervised by Aaron Wetzler

Thank you
for your attention,
and to
Chen Sagiv and Jacob Cohen
for inviting me to the IMVC'15

Questions?