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Neural networks are great
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Can we use them in additional ways?
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MRI

3D medical imaging technique

e Noninvasive
e Without harmful radiation

o Superb imaging contrast and resolution

Long acquisition times (30-60 mins)

PILOT: Physics-Informed Learned Optimized Trajectories for Accelerated MRI - MELBA journal


https://en.wikipedia.org/wiki/Medical_imaging
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Acceleration through undersampling
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PILOT: Physics-Informed Learned Optimized Trajectories for Accelerated MRI - MELBA journal



i . compuﬁer Technion
Science g Israel Institute of
I Department Technology
7

= Forward pass

Zd“ “— Back propagation
- Inference

PILOT: Physics-Informed Learned Optimized Trajectories for Accelerated MRI - MELBA journal



— Computer Sy Technion
Science Israel Institute of
I Department Technology
P4

Results i s

Reconstructed Ground Truth
Fixed Learned

PSNR: 29.81
SSIM: 0.785

Fixed

16 Shots

PSNR: 27.61 PSNR: 32.22
SSIM: 0.723 SSIM: 0. 869
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N. of shots 16 =
Trajectory PSNR SSIM g
Cartesian-Fixed 18.57+1.67 0.427-+0.051 g

| Cartesian-PILOT | 31.43+1.48 | 0.806+0.036 |

Rm?ial—Fixeiiw 29.09+1.43 | 0.741+0.040 I o
| Radial-PILOT 33.71+1.58 | 0.863+0.032 |

Spiral-Fixed 33.89+1.56 0.874=+0.030 s AR SR
| Spiral-PILOT 35.55+1.59 | 0.903-0.026 | St ettt indts

PILOT: Physics-Informed Learned Optimized Trajectories for Accelerated MRI - MELBA journal



- 53'3.'.’;"' \\ Technion
| \ T Department g 'Il’s:lﬂ;rl‘:;ny"" o
P4

Different end task or organ

Segmentation Reconstruction

: Physics-Informed Learned Optimized Trajectories for Accelerated MRI - MELBA journal



|ST

Diffusion MRI

Compnter
Science
Department

\ ¥

Training

Technion

Israel Institute of
Technology

—

Subsampling]
layer

S

N

)

Reconst.
network

Ry

= Forward pass ' ¢),7 9

<+— Back propagation

Inference

)

Tractograph
algorithm

Towards learned optimal g-space sampling in diffusion MRI— MICCAI 2020
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MIMO radar imaging

Pros

* Accurate range, velocity and direction of arrival (DOA) estimation at

relatively long distances

* Automotive - penetrate much denser fog and rain compared to the
optical counterparts

Cons

* multiple receive channels -> high cost and power

e Low frame rate

Joint optimization of system design and reconstruction in MIMO radar imaging — MLSP 2021
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Results - MIMO radar imaging

Distorted - Za
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Joint optimization tem design and reco tion in MIMO radar imagin
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Guided Diffusion for Inverse Molecular Design — Nature Computational Science
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Can we use the gradients of a prediction network?

Properties \J )
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Guided Diffusion for Inverse Molecular Design — Nature Computational Science
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Guided Diffusion Models
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Guided Diffusion for Inverse Molecular Design — Nature Computational Science
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GaUDI - Out of Distribution

Target: Maximize HOMO-LUMO gap
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Guided Diffusion for Inverse Molecular Design — Nature Computational Science



* There are many interesting ways we can use Neural-Networks

Thanks!
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