

Model-Based Real Time Quantitative Ultrasound and Radar Tom Sharon, Yonina C. Eldar

 $\frac{1}{1} \sqrt{2024}$

Problem statements

SAGIVTECH

IMVC 2024 -

Problem statements

Full Waveform Inversion (FWI) algorithm

An iterative optimization method, based on GD, to achieve quantitative imaging

from the signals

Loss [dB]

Advantages

No training Recovers different physical properties

Disadvantages

• Time consuming

IMVC 2024 -

SAGIVTECH

- Tends to converge to a local minima
- Initial guess should be close to true solution

Full Waveform Inversion (FWI) algorithm

An iterative optimization method, based on GD, to achieve quantitative imaging from the signals

$$L\left(\left\{\theta_{j}\right\}_{j=1}^{n_{m}}\right) = \frac{1}{2}\left\|M - F\left(\left\{\theta_{j}\right\}_{j=1}^{n_{m}}\right)\right\|_{2}^{2} \qquad \text{signals}$$

IMVC 2024 -

The update of the physical property in the i+1 iteration:

$$\theta_j^{i+1} = \theta_j^i - \eta \frac{\partial L(\{\theta_j^i\}_{j=1}^{n_m})}{\partial \theta_j}$$

 $\theta_j \in \mathbb{R}^{n_x X n_z}$ is the j'th physical property out of n_m properties M is the measured signals F() is the known wave propagation equation

Data creation

SAGIVTECH

IMVC 2024 -

Model-based deep learning

Better than **pure analytical** solution

Improved inference resultsImproved inference time

Better than standard deep NN

✓ Requires less training data✓ Better generalization

IMVC 2024 -

SAGIVTECH IMVC 2024 -

Our method: MB-QRUS

- Unfolding of FWI with learned gradients (G = $\frac{\partial L}{\partial \theta_i}$) according to a U-Net based block
- SoS density Network input: ullet• M Measured signals Initial properties US • $\{\theta_j^0\}_{j=1}^{n_m}$ US Model F: **Physical properties** Trained Output: ulletWave reconstruction network • $\{\theta_{i}^{L}\}_{i=1}^{n_{m}}$ n_p equation n_{t} Radar permittivity conductivity n_c Initial properties radar

	<u>MNIST '0'</u>		<u>Noisy Medium</u>		<u>Nois</u>	<u>Noisy input</u>		<u>Two Objects</u>		<u>r Probe</u>		
r	SoS	den	sity	SoS	density	SoS	density	SoS	density	/ SoS	density	SoS density
GT	0	C)	•	٠	٠	•	••	••	•	•	- 1520 - 1500 - 1500 - 1480 - 1.0
Ours	0	U	Ţ	8	9		•	•	~	•	•	- 1460 - 1440 - 0.8
FWI	-X6-	т. Т	9	-77-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		W		- *		- 1.04 - 1500 - 1490 - 1480 - 1.00 - 1470 - 1460 - 0.96
	Property		y NRMSE		PSNR		SSIM				E\\//	1450
	Sos	S	-5	6.33%	1.93%	6 8	8.15%			<u> </u>		
	dens	ity	-5	5.43%	13.15%	% θ	5.10%	<	s i second	> 3.	z minutes	

Realistic liver shapes

Property	NRMSE	PSNR	SSIM	
SoS	-62.87%	1.7%	20.72%	
density	-62.35%	53.37%	33.63%	

OURS	FWI
< 1 second	> 32 minutes

Property	NRMSE	PSNR	SSIM
conductivity	-83.53%	24.61%	1150.35%
permittivity	-79.72%	3.91%	467.33%

Phantom1 Real Data Phantom2

Contribution summary

SC

Quantitative results in real time

- Multiple physical properties reconstruction
- Works on realistic data with high accuracy results + real recorded data
- Using data from only 8 elements Suitable for diverse transmission setups including linear probe

