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Full Waveform Inversion (FWI) algorithm
An iterative optimization method, based on GD,  to achieve quantitative imaging 

from the signals

• No training 

• Recovers different
physical properties 

• Time consuming
• Tends to converge to a

local minima
• Initial guess should be 

close to true solution 

Advantages Disadvantages 



Full Waveform Inversion (FWI) algorithm
An iterative optimization method, based on GD,  to achieve quantitative imaging 
from the signals

The update of the physical property in the i+1 iteration:
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𝜃𝑗 ∈ ℝ𝑛𝑥 𝑋 𝑛𝑧  is the j’th physical property out of 𝑛𝑚 properties

M is the measured signals
F() is the known wave propagation equation
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Data creation 
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Model-based deep learning

Better than 
pure analytical 

solution

Better than 
standard deep 

NN

✓ Improved inference results
✓ Improved inference time

✓Requires less training data
✓Better generalization



Our method: MB-QRUS
• Unfolding of FWI with learned gradients (G = 

𝜕𝐿

𝜕𝜃𝑗
) according to a U-Net based block

• Network input: 
• M 

• {𝜃𝑗
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• Output:
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Results
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Ours

Two ObjectsNoisy Medium
SoS density

GT

FWI

MNIST ‘0’
SoS density SoS density SoS density SoS density

Noisy input Linear Probe

Property NRMSE PSNR SSIM

SoS -56.33% 1.93% 8.15%

density -55.43% 13.15% 6.10%

OURS FWI 

< 1 second > 32 minutes

SoS density



Realistic liver shapes
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SoS density SoS density SoS density SoS density SoS density SoS density

Property NRMSE PSNR SSIM

SoS -62.87% 1.7% 20.72%

density -62.35% 53.37% 33.63%

OURS FWI 

< 1 second > 32 minutes



perm. cond.

Ours 

GT

FWI

perm. cond.perm. cond.perm. cond.perm. cond.

Brain SliceMNIST ‘0’ MNIST ‘6’ MNIST ‘5’

Property NRMSE PSNR SSIM

conductivity -83.53% 24.61% 1150.35%

permittivity -79.72% 3.91% 467.33%

OURS FWI 

< 0.3 seconds 13-32 minutes

perm. cond.
Brain slice

MNIST
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Contribution summary

Multiple physical 
properties reconstruction

Works on realistic data
with high accuracy results 
+ real recorded data

Using data from only 8 
elements

Quantitative results in real time

Reconstruction from 
either radar or US signals

Suitable for diverse transmission 
setups including linear probe
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