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Ad measurement leader!
Clients: 

Advertisers, Platforms, 
Publishers

AI focus: 

Online content classification

Where?

social media & open web

scale:

>100M images, videos, 
web-pages / day



Data Challenges

Open ended domain

Extremely in the wild

“Never enough data”



What is this talk about?

Showcasing a simple, automatic method for a reliable 
dataset expansion, based on a diverse minimal coreset.

This method is useful for POC / MVP when there is no 
resources to label a big amount of data.



How much data is “enough”?

The bare minimum is
unknown…

The classical N_class >= 1k ?

It depends…

not enough significant boost diminishing 
returns

performance

Amount of data



Select for your task

Business domain embedding model

HQ labeled data

Abundant, highly diverse, unlabeled data

Good diversity, bad embedding    good embedding, bad diversity



Auto labeling starting point

Select an unlabeled dataset

Label a few samples

Rum label spreading (semi 
supervised) on the unlabeled data

some labeled data

mostly unlabeled data

labeled 
samples



Auto labeling from sklearn.semi_supervised import LabelSpreading

# X: all input vector; Y: corresponding labels, where the 
unlabeled are set to value -1
spread_model = LabelSpreading()
spread_model.fit(X, Y)
Y_pred = spread_model.predict(X)

# or, when optimizing on confidence/probability:
Y_pred_conf = spread_model.predict_proba(X)

from sklearn.semi_supervised import SelfTrainingClassifier
from sklearn.svm import SVC

# X: all input vector; Y: corresponding labels, where the 
unlabeled are set to value -1
svc = SVC(probability=True)
self_training_model = SelfTrainingClassifier(svc)
self_training_model.fit(X, Y)
Y_pred = self_training_model.predict(X)
# or, when optimizing on confidence/probability:
Y_pred_conf = self_training_model.predict_proba(X)



Auto labeling - with confidence

“Ingredients”:

● A big unlabeled dataset
● Business metric
● Diverse core-set labeled 

per each class

unlabeled samples

Labeled 
samples 

as 
coreset

initial state



Auto labeling - with confidence
unlabeled samples

all 
labeled 
positive

all labeled 
positive, 
above 

metric_th
Labeled 
samples 

as 
coreset

naive auto-labeled

Process:

● Run label-spreading 
(colored darkly)

● Threshold the metric to 
label the relevant samples 
(colored intermediately)

● Do so for stratified k-folds



Auto labeling - with confidence
unlabeled samples

all 
labeled 
positive

all 
labeled 
positive, 
above 
opt_th

Labeled 
samples 

as 
coreset

stratified fold: 1

Process 1:

● Run label-spreading 
(colored darkly)

● Threshold the metric to 
label the relevant samples 
(colored intermediately)

● Do so for stratified k-folds



Auto labeling - with confidence
unlabeled samples

all 
labeled 
positive

all 
labeled 
positive, 
above 
opt_th

Labeled 
samples 

as 
coreset

stratified fold: 2

Process 1:

● Run label-spreading 
(colored darkly)

● Threshold the metric to 
label the relevant samples 
(colored intermediately)

● Do so for stratified k-folds



Auto labeling - with confidence
unlabeled samples

all 
labeled 
positive

all labeled 
positive, 
above 

metric_th
Labeled 
samples 

as 
coreset

Final result

Process 2:

● Categorical altogether / 
separately, optimize 
threshold/s over folds

● Rerun label-spreading 
based on the optimized 
threshold, for all the 
dataset



Auto labeling - with confidence
Confidence threshold optimization (self training)

The iterative process

Business metric

Which samples to select?

ideal

metric

# auto + orig

import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.semi_supervised import SelfTrainingClassifier
from sklearn.svm import SVC

def optimal_score_threshold(X_labeled, Y_labeled, X_unlabeled, Y_unlabeled, base_classifier, dth=0.1, n_splits=5):
   splits = StratifiedKFold(n_splits=n_splits, random_state=108, shuffle=True).split(X_labeled, Y_labeled)
   th_score = []
   thresholds = np.arange(dth, 1., dth)
   for i, threshold in enumerate(thresholds): # brute/grid-search with dth increments
       self_training_model = SelfTrainingClassifier(base_classifier, threshold=threshold)
       # cross validation so that we won’t get a val/train-split-skewed result:
       scores = []
       for fold, (train_index, test_index) in enumerate(splits):
           X_train, y_train = X_labeled[train_index], Y_labeled[train_index]
           X_test, y_test = X_labeled[test_index], Y_labeled[test_index]
           self_training_model.fit(np.concatenate([X_train, X_unlabeled]), np.concatenate([y_train, Y_unlabeled]))
           y_pred = self_training_model.predict(X_test)
           scores.append(business_metric(y_test, y_pred))
       th_score.append(np.mean(scores)) # we mean out folds' inconsistency
   th_score = np.array(th_score)
   return th_score.max(), thresholds[th_score.argmax()]

def optimal_auto_label(X_labeled, Y_labeled, X_unlabeled, Y_unlabeled, dth=0.1, n_splits=5):
   base_classifier = SVC(kernel='linear', probability=True, random_state=108)
   expected_score, opt_threshold = optimal_score_threshold(X_labeled, Y_labeled, X_unlabeled, Y_unlabeled,
                                                           base_classifier, dth=dth, n_splits=n_splits)
   self_training_model = SelfTrainingClassifier(base_classifier, threshold=opt_threshold)
   self_training_model.fit(np.concatenate([X_labeled, X_unlabeled]), np.concatenate([Y_labeled, Y_unlabeled]))
   y_pred = self_training_model.predict(X_unlabeled)
   # returning reliable auto-labeled samples:
   return X_unlabeled[y_pred > -1], y_pred[y_pred > -1]



Caveats

● Dataset bias - we rely on external data / foundational model

● Low-definition dataset for your use-case

● Heavily relies on the chosen metric (which may be under defined)

● Unfit for sparse-visual domains (medical, for example)



Takeaways 

● A small labeled dataset is not a dead end
● A few diverse samples can get you a long way
● Breach gaps by manually label a few uncertain samples

Thanks! 
Come say hi, at DoubleVerify’s booth!


