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➢ Describing the challenge: Why it is costly to build foundation model?

➢ The revolution: Getting high quality LLM with 600$

➢ Improvements: Quality and costs

➢ Extensions: Multimodality



One company show 

● Up until recently it seems that openAI is going to rule the LLM field

● The barrier to get to such high quality (Instruct/Chat-GPT/GPT-4) seems to be almost 
impossible for other competitors



Challenge 1: Foundation model

● Standard architecture:  Autoregressive decoder only transformer 

● Simple objective: Given a sequence of tokens predict the next tokens

Transformer decoder 
architecture 
(autoregressive)



Challenge 1: Foundation model

● One of the key components is the massive diverse dataset that was used for training 

● The model is exposed to a huge amount of human knowledge, including things like arithmetic 
calculations, program languages, and other blogs/tutorials that exists on the web

The Common Crawl corpus contains 

petabytes of data including raw web page 

data, metadata data and text data 

collected over 8 years of web crawling

WebText is an internet dataset created by 

scraping URLs extracted from Reddit 

submissions with a minimum score of 3 

as a proxy for quality.

GPT-3 dataset



Challenge 1: Foundation model

● Building a foundation model ~4m$ (only training without data curation)

● Considered to be large (require complex infrastructure to in order to serve)



Challenge 2: High quality instruct data

With instruct tuning

Base model

● More importantly: OpenAI collect a massive amount of high quality data (with human feedback)

● Fine-tuning the model on this data (alignment) is essential, resulting in significant boost in model 
performances
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Challenge 2: High quality instruct data

● OpenAI invest huge amount of effort (and money) in data curation

GPT-4 contributors list



Foundation model

● On 2.23 Meta released a new (research) open-source series of LLM 
foundation models called LLaMA

● The 13B size model beat GPT-3 largest model (175B)



LLaMA improvements 

● The dataset is better (mainly bigger 1-1.4 trillion tokens)
● The model was trained more time (increasing dataset size allow to train more time without repeating 

epochs)

● According to Chinchilla scaling law we can expect that the model size can be reduced even further

https://www.harmdevries.com/post/model-size-vs-compute-overhead/


LLaMA-2

● 40% more data
● Double context length (4096)

Mistral

● 7B model Outperforms Llama-2 13B on all benchmarks
● Trained on 8k context length with sliding window attention-> 

theoretical attention span of 128K tokens

Gemma

● Recent model by Google
● Largest model in the series is 7B
● Perform better than Mistral on some tasks like coding



Instruct data 

● Alpaca recipe: Distill knowledge from OpenAI proprietary models 
● Result: Comparable quality to text-davinci-003

Model Cost: 500$ for the data + 100$ 
training (+ 4m$ for GPT-3 + 4m$ for LLama) 
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Improvements
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● Why using GPT-3? -> Vicuna using 70k Chat conversations Chat-GPT-> 
90% Chat GPT quality (Judgement by GPT-4)
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Data

● Why using GPT-3? -> Vicuna using 70k Chat conversations Chat-GPT-> 
90% Chat GPT quality (Judgement by GPT-4)

● Wizard-LM: Build evolve instruction using LLM (70k) 

There is larger gap on 
more complex tasks



Loss function

● In all the described methods the loss function is cross-entropy on the next token completion

● This loss is (theoretically) sub-optimal for the following reasons:
○ We ‘punish’ the model even in cases he provide a good result, if this result is phrased 

differently compared to chat-GPT
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Loss function

● In all the described methods the loss function is cross-entropy on the next word completion

● This loss is (theoretically) sub-optimal for the following reasons:
○ We ‘punish’ the model even in cases he provide a good result, if this result is phrased 

differently compared to chat-GPT
○ There is no ‘severity’ (how much bad/good was the result)
○ This method is considered as not Temporally compositional
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● We can use RL offline learning techniques to improve results
● RLHF framework:

○ Step 1: Take a prompt and generate multiple results 
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Loss function

RLHF

Regular cross-
entropy 

● We can use RL offline learning techniques to improve results
● RLHF framework:

○ Step 1: Take a prompt and generate multiple results 
○ Step 2: Use Human feedback to to compare the generation 

quality and train a ranking model
○ Step 3: Use this ranking model as a reward model and fine-

tune the model with offline-RL algorithm (original PPO, but 
there are better objective like ILQL)
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dataset



Loss function

● RLAIF- You can use strong LLM (GPT-4) to generate the preference 
dataset

● Use RL to steer the model behaviour: You can either do it implicitly by 
changing the preference model (RLAIF), or explicitly by modifying the 
reward function



Parameter Efficient Fine-Tuning (prefix tuning)

● Adding small amount of trainable tokens as prefix (training only these tokens)
● There is a zero gating initialization (we start from the original solution)
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Parameter Efficient Fine-Tuning

● LLaMA-Adapter (prefix-tuning): 1.2M parameters, 1h fine-tuning (8 A100)

● LLaMA-Adapter V2: Adding bias and scale tuning + LoRA

http://lama-adapter
https://github.com/ZrrSkywalker/LLaMA-Adapter


Multi-modality



Multimodal prefix tuning

● We can use the prefix tuning technique to add more modalities
● This is simply done be projecting the modality encoder embedding to the trainable tokens
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● We can use the prefix tuning technique to add more modalities
● This is simply done be projecting the modality encoder embedding to the trainable tokens



What about multi-modal output?
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● Typical architecture
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● We already have strong text2img/audio/video diffusion models
● Typical architecture
● We freeze the diffusion network and train only a projection layer that align the image tokens 

with the diffusion text encoder



Next-GPT

Only 1% parameters are trainable





Conclusion

● Today there are various advanced methods and tools that provide access to very powerful model 
(almost comparable to proprietary models)  

● These models can be easily (and cheaply) customized according to the user specific domain and 
objective  

● There are effective methods to extend the model capabilities, for example: adding more 
modalities, extending content window
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