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Introduction to Medical Imaging

Photography
~ R A
Medical Energy
imaging cource Detector
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Introduction to MRI

MRI




Introduction to MRI

(

v’ Safe — no ionizing radiation
v" Rich visual information e
v’ Captures static & dynamic data

Courtesy of Lustig lab

Courtesy of Lustig lab

Courtesy of Lustig Lab

Courtesy of Joseph Cheng

www.youtube.com/user/channelmum



Introduction to MRI

MRI 4 A
Limitations:

 Long scan duration (30-60min)
e Sensitivity to motion artifacts
* Expensive

- J

Motion Artifacts

Zaitsev et al. MRM 2015



How can we make scans
faster?



: from sampling to images

Fourier domain




: from sampling to images

Fourier domain
k-space

IFFT




: from sampling to images

Fourier domain
k-space

IFFT
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: from sampling to images

Fourier domain
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MRI: from sampling to images

Fourier domain

k-space

€ 3

Image

>| reconstruction

algorithm

\ /

Parallel Imaging (1990s-2000s)
Compressed Sensing (2006-)
Machine Learning (2016-)

Training data?
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Data Crimes
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How image reconstruction algorithms are developed

Fully
Sysdhgsieed

Shimron et al., Implicit data crimes, PNAS (2022)

“Gold Standard”
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How image reconstruction algorithms are developed

“Gold Standard”

Synthesized
k-space

NRMSE

database »

Shimron et al., Implicit data crimes, PNAS (2022)
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festMRI] i 1306 reconstruction algorlthms are developed

SKM-TEA

Hidden data processing

Alﬁhelmer s Dataset

IX| Dataset

Hman Connectorr Biased !

database

a faster MRI challeg

Blackbox

mridata.org
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Synthesized
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NRMSE

DFT

database

Shimron et al., Implicit data crimes, PNAS (2022) 16



Data Crimes: Implicit Bias of Reconstruction Algorithms

FastMRI Data Compressed Sensing Dictionary Learning Deep Learning

—— weak VD —e— weak VD
—— strong VD —— strong VD

x1.5 | 2 X - x15 x5
zero-padding zero-padding zero-padding

Preprocessing Preprocessing Preprocessing

Shimron et al., Implicit data crimes, PNAS (2022)
Lustig et al., MRM (2007); Ravishankar et al, IEEE TMI (2010); Aggarwal et al. IEEE TMI (2019)




Can we train on processed data &

use the algorithms for clinical data?
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Data Crimes: Implicit Bias of Reconstruction Algorithms

Processed data raw clinical data

Shimron et al., Implicit data crimes, PNAS (2022)
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Data Crimes: Implicit Bias of Reconstruction Algorithms

X Naive use of Big Data can lead to biased results

X Error metrics - blind to the preprocessing

“Gold Standard”
Synthesized ["/( A\
k-space EAY

Var-dens mask

Shimron et al., Implicit data crimes, PNAS (2022)
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Data Crimes: Implicit Bias of Reconstruction Algorithms

X Naive use of Big Data can lead to biased results

X Error metrics - blind to the preprocessing

X Algorithms trained on processed data could fail
for clinical data - they miss important details

Shimron et al., Implicit data crimes, PNAS (2022)
21



|

Acquisition is too slow —
full data is unavailable

|

No suitable
data

How can we
develop new
imaging methods?

22



K-Band
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K-band: Fast Acquisition & Self-supervised Reconstruction

'BAIR ..
(_@_ R g =
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BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

TN

T

Video is courtesy of Lustig lab

Wang et al., arXiv 2023, “k-band: self-supervised MRI reconstruction”
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K-band: Fast Acquisition & Self-supervised Reconstruction

But gives data with
a limited resolution fast!

14
‘g

-

L8

Wang et al., arXiv 2023, “k-band: self-supervised MRI reconstruction”
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K-band: Fast Acquisition & Self-supervised Reconstruction

4 ] N\
Can we use this

limited-res data?

%

Wang et al., arXiv 2023, “k-band: self-supervised MRI reconstruction”



K-band: Fast Acquisition & Self-supervised Reconstruction

Self-supervised training

Retrospective Reconstructed Acquired

band band

under-sampllng.lmnednet“m( /
7 Loss

S
N

S.G.D. over k-space subsets

Loss Weighting
©
(o]

e
w

v" Convergence proof

o
o

100 200 300 400
Vertical Location (from top)

o

Loss-weighting mask

Wang et al., arXiv 2023, “k-band: self-supervised MRI reconstruction”
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K-band: Fast Acquisition & Self-supervised Reconstruction

Self-supervised training

Retrospective Reconstructed Acquired
band band

under-sampling ;. o lled network

AU CRGUE  Training on partial, limited-res data
reconstruction

Pre-trained unrolled network /48 Test-time generalization to
| high-res data

Wang et al., arXiv 2023, “k-band: self-supervised MRI reconstruction”
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Low-field MRI: Accessible & affordable —

4y HARVARD

MEDICAL SCHOOL

A3

i Y

.

Hyperfine.io

AUTOMAP

v/ Low-cost
V' Portable
- Low SNR

- Long scans (vmgnited 3

SSIM =0.87 SSIM =0.85 SSIM =0.87

. . NRMSE =0.033 NRMSE =0.035 NRMSE =0.028
Waddington, Shimron, et al., ISMRM 2023
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