

Less is More: Selective Layer Finetuning with SubTuning

Gal Kaplun* Harvard University & Mobileye

Mazor David Mobileye **Shai Shalev-Shwartz** Hebrew University & Mobileye

Andrey Gurevich Mobileye Tal Swisa Mobileye

Eran Malach Hebrew University & Mobileye

Agenda

- Motivation
- Finetuning Profile
- SubTuning
 - The algorithm
 - 0
 - Multitask 0

Sparce & Corrupted data

© MOBILEYE

Motivation

nobileye"

Training DNNs – Basic Methods

- From scratch
 - o Requires a lot of data & compute
 - o Low performance
- Pretrained model
 - o Allowing rapid convergence
 - o Enhanced performance
- New head on pretrained model
 - o Very fast and efficient
 - o Low capacity
- Finetuning
 - o Better performance
 - o Costly in data & compute

Other Methods

- Head2Toe
 - Internediate features may have useful 0 information
 - Feature selection is computationally 0 complex
- LORA Low-Rank Adaptaion of LLMs
 - Reduces trainable params by x10,000 0
 - No additional cost at inference 0

Figure 1: Our reparametrization. We only train A and B.

nobileye*

What if we finetune only a subset of layers?

Will we achieve the benefits of all worlds?

ResNet50 has 16 ResBlocks 4 resolutions Not all layers are created equal Different layers -> different contribution to performance 0.950 0.950 0.950 0.940

Finetune Profile: ResNet-50, CIFAR-10

Optimal choice of layers depends on

- Target task
- Architecture
- Pretraining

Figure 2: Finetuning profiles for different architectures, initializations and datasets.

SubTuning

nobileye"

SubTuning Algorithm

- We want to finetune a subset of layers
 - SubTuning 0
 - Fined best subset via Finetuning Profile 0
- This may be expensive -> Greedy Algorithm
 - Iteratively find the best layer to finetune 0
 - Stop when improvement < ε . 0

Figure 3: 2-block finetuning profile for ResNet-50 over CIFAR-10.

Results - Scarce Data

When only limited data is available

- Finetuning results in overfitting
- But SubTuning has great results

reported in Table 5 in the appendix.

	ResNet50				ViT-b/16			
	CIFAR-100	Flowers102	Caltech101	DMLAB	CIFAR-100	Flowers102	Caltech101	DMLab
Ours	54.6	90.5	86.5	51.2	68.0	97.7	86.5	36.4
H2T ² [13]	47.1	85.6	88.8	43.9	58.2	85.9	87.3	41.6
FT	33.7	87.3	78.7	48.2	47.8	91.2	80.7	34.3
LP	35.4	64.2	67.1	36.3	29.9	84.7	72.7	31.0
LoRA [22]	-	-	-	-	40.4	88.3	79.2	36.4

Table 1: Performance of ResNet-50 and ViT-b/16 pretrained on ImageNet and finetuned on datasets from VTAB-1k. FT denotes finetuning while LP stands for linear probing. Standard deviations

Results - Distribution Shift

- CIFAR-10 to CIFAR-10-C distribution shift
- Corrupted data

frost

Table 2: CIFAR-10 to CIFAR-10-C distribution shift.

ribution shift	SubTuning	Finetuning	Surgical L1	Surgical L2	Surgical L3	Linear
zoom blur	90.0 ± 0.1	87.8 ± 0.4	89.2 ± 0.1	89.1 ± 0.2	85.5 ± 0.3	68.7 ± 0.04
eckle noise	81.5 ± 0.2	77.8 ± 0.6	78.4 ± 0.1	74.8 ± 0.1	71.1 ± 0.1	51.5 ± 0.01
spatter	89.2 ± 0.2	86.8 ± 0.3	89.4 ± 0.1	87.4 ± 0.2	85.3 ± 0.0	80.4 ± 0.07
snow	86.0 ± 0.2	84.1 ± 0.2	84.8 ± 0.2	84.3 ± 0.1	82.2 ± 0.2	78.7 ± 0.07
shot noise	82.0 ± 0.3	77.6 ± 0.4	77.0 ± 0.9	74.2 ± 0.1	69.9 ± 0.1	46.4 ± 0.01
saturate	92.0 ± 0.1	89.5 ± 0.3	91.7 ± 0.0	91.2 ± 0.0	90.4 ± 0.0	89.8 ± 0.04
pixelate	86.1 ± 0.0	82.8 ± 0.5	85.8 ± 0.1	83.6 ± 0.2	78.5 ± 0.2	54.8 ± 0.02
notion blur	87.3 ± 0.1	85.5 ± 0.3	86.7 ± 0.1	86.9 ± 0.1	83.4 ± 0.1	72.9 ± 0.03
compression	80.8 ± 0.2	76.5 ± 0.7	80.1 ± 0.5	76.8 ± 0.1	74.9 ± 0.1	72.0 ± 0.04
pulse noise	75.4 ± 0.5	70.8 ± 0.7	69.6 ± 0.3	63.8 ± 0.1	56.7 ± 0.1	35.2 ± 0.01
glass blur	74.3 ± 0.3	72.2 ± 0.2	69.9 ± 0.4	71.5 ± 0.1	67.8 ± 0.1	55.2 ± 0.06
ussian noise	80.0 ± 0.2	75.1 ± 1.2	72.7 ± 0.1	71.0 ± 0.1	66.6 ± 0.2	41.1 ± 0.01
ussian blur	89.5 ± 0.2	86.4 ± 0.4	88.1 ± 0.0	87.3 ± 0.1	80.0 ± 0.0	41.7 ± 0.05
frost	84.2 ± 0.2	83.1 ± 0.4	84.2 ± 0.3	83.2 ± 0.1	80.4 ± 0.2	68.5 ± 0.03
Average	84.2 ± 0.2	81.1 ± 0.5	82.0 ± 0.2	80.4 ± 0.1	76.6 ± 0.1	$\overline{61.2\pm0.04}$

MultiTask

Ideal for Multi-Task

- High algorithmic performance 0
- Allows to add new task to deployed models 0
 - No effect on existing task
 - Low inference cost Concat intermediate outputs on batch

Figure 6: SubTuning for MTL. Each new task utilizes a consecutive subset of layers of a network and shares the others. At the end of the split, the outputs of different tasks are concatenated and parallelized along the batch axis for computational efficiency.

New head on frozen BB

Results - MultiTask

ImageNet to CIFAR-10 transfer learning

- Linear probing 91.8%
 - o only a small inference delay
- Finetuning 97.1%
 - +100% inference cost

Figure 7: Accuracy on CIFAR-10 vs A100 latency with batch size of 1 and input resolution of 224.

Summary

• SubTuning is simple yet efficient

- o Selects a subset of layers to finetune
- o Greedy algorithm for fast perfomance
- o Achives SoTA performance
- Finetuning Profile
 - o Not all layers are created equal
- Ideal for Multi-Task on a deployed model
 - o Low inference cost
 - o High performance
 - o No effect on existing task

Thank you!

Contact me at gurevichan@gmail.com

™ mobileye™