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Probably Not 
Good Enough 



We Have an Easy 
Solution ☺
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2022 FMs vs Today
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• In 2022 CLIP was SOTA.

• FETA’s method can use any base model and hopefully improve it.



FETA
Overview
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• FMs (V&L) Models/ datasets, focus and excel on real common images (left).
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• FMs (V&L) Models/ datasets, focus and excel on real common images (left).

• FMs performs poorly on some expert data.

• We propose an AUTOMATIC pipeline for extracting expert data from documents.

• We offer FETA’s MIL-CLIP learn from documents’ pages (right).



FETA Datasets – Real World 
Expert Data
100% automatic annotation process for any document.
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Car-Manuals data

IKEA data



Expert Data 
Common Nouns- 
Greatly Differ 
From Popular
CV Data:
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Training With Automatically 
Annotated Documents
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• CLIP requires one-to-one matching between image 
and text learn.

• Our automatic pipeline creates one-to-many Image-
texts bags.



MIL-CLIP: Image-Texts Bags

Positive texts bag



MIL-CLIP: Image-Texts Bags
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Positive texts bag

Negative texts bag



CLIP-MIL Max Loss
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Positive texts bag

Choose text with maximal similarity from the positive bag

0.15

0.3

0.55
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Baselines
1. Concatenate (ours):  merge all page texts.
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Baselines
1. Concatenate (ours):  merge all page texts.

2. Choose-One (ours): randomly select one text 
from each page.
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1. Concatenate (ours):  merge all page texts.

2. Choose-One (ours): randomly select one text 
from each page.

3. CLIP, Radford et al. ICML 21.

4. FLAVA, Singh et al. 22.

5. ALBEF, Li et al. NEURIPS 21.

6. Vilt, Kim et al. ICML 21.

Baselines
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Experimental Setting – Car-Manuals Data
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Train on Test on

5 folds, one for each car manufacturer were used for all experiments.

i. Zero-Shot: Leave one manufacturer out.



Experimental Setting – Car-Manuals Data

23

Train on Test on

- 1 document

5 folds, one for each car manufacturer were used for all experiments.

i. Zero-Shot: Leave one manufacturer out.

ii. One-Shot: Same as Zero-shot + 1 document from test manufacturer.



Experimental Setting – Car-Manuals Data
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Train on Test on

~20 document

5 folds, one for each car manufacturer were used for all experiments.

i. Zero-Shot: Leave one manufacturer out.

ii. One-Shot: Same as Zero-shot + 1 document from test manufacturer.

iii. Few-Shot: ~20 documents instead of 1.



Experimental Setting – Car-Manuals Data

5 folds, one for each car manufacturer were used for all experiments.

i. Zero-Shot: Leave one manufacturer out.

ii. One-Shot: Same as Zero-shot + 1 document from test manufacturer.

iii. Few-Shot: ~20 documents instead of 1.

iv. Many-Shot: ~200 documents instead of 1.

25

Train on Test on

~200 document

Test on



Car Manuals 
Data Retrieval 
Results
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25% 
performance 
boost



Manually 
Annotated 
Data

• We manually annotated a 
subset of the documents.

• The results validate the 
results of the automatically 
annotated data.
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Parameter Locking and LoRA Ablation

30

• CLIP 400M finetuned while locking different parts of the network.

• We use LoRA to interpolate between the Unlocked (rank r = 512) and the Locked Image 
(rank r = 0) variants. 

• Many-Shot results:

Rank r- size of residual adapters weight matrices.



• Automatic pipeline for extracting data from documents.
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Summary - FETA



32

Summary - FETA
• Automatic pipeline for extracting data from documents.

• Expert data for which we found that FMs performance is poor.  



Summary - FETA
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• Automatic pipeline for extracting data from documents.

• Expert data for which we found that FMs performance is poor.  

• FETA’s MIL-CLIP learn from documents’ pages.
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Positive texts bag

0.15

0.3

0.55



Future Work

• Our code is available on Github.

• Automatically create new datasets in Medical, Patents, etc.

• Test FMs on your own data of choice.

• Create new method to adapt FMs on expert data.
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Thank you for 
listening! 

Come to our poster 
and let’s talk! 
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