
VoxelSensors

The Future of Spatial Computing

Boris Greenberg, VP of XR Solutions

© 2024 VoxelSensors. All Rights Reserved. Boris Greenberg - VP XR Solutions IMVC 2024

Current personal devices are underperforming for mass consumer adoption.

© 2024 VoxelSensors. All Rights Reserved. Boris Greenberg - VP XR Solutions IMVC 2024 Spatial Computing* devices will fuel the next big computer revolution. Current designs are underperforming for mass consumer adoption.

We make Spatial Computing truly immersive to unlock the full potential of unbounded experiences.

* for clarity, we refer to Spatial Computing as the ability of devices to be Spatially Aware of their surroundings and to represent this digitally

Contextual Sensing is a Long-Standing Topic

Contextual Sensing is a key enabler for many crucial functions

- SLAM and general odometry for environment navigation (mobile, XR, robotics, automation)
- Object identification for virtual content occlusion and anchoring (mobile, XR)
- Hand and object tracking for interaction and manipulation (XR, robotics, automation)
- Segmentation, indexing and environment understanding (mobile, XR, robotics, automation)
- Biometric Authentication and Vital Signs (mobile, XR)

Contextual Sensing is a Long-Standing Topic

Major considerations for Mobile and XR, but also for robotics, etc.

1. Power efficiency

2. Latency

3. Accuracy

4. Robustness and durability

Lightweight wearable, decent battery life

No lag between system and real world

Quality of the data directly impacts quality of the function. E.g., in XR anchoring stability and correct virtual object dynamics

Working with other concurrent system; Operation in any light condition [darkness and daylight] Environment agnostic

The Key Message

Problem:

- Performance vs
- power consumption
- Latency vs
 - accuracy tradeoff

Solution:

- Change the sensing paradigm
- Evolve
 compute architecture

Technology:

- Efficient Active Event Sensors
- Progressive compute pipeline

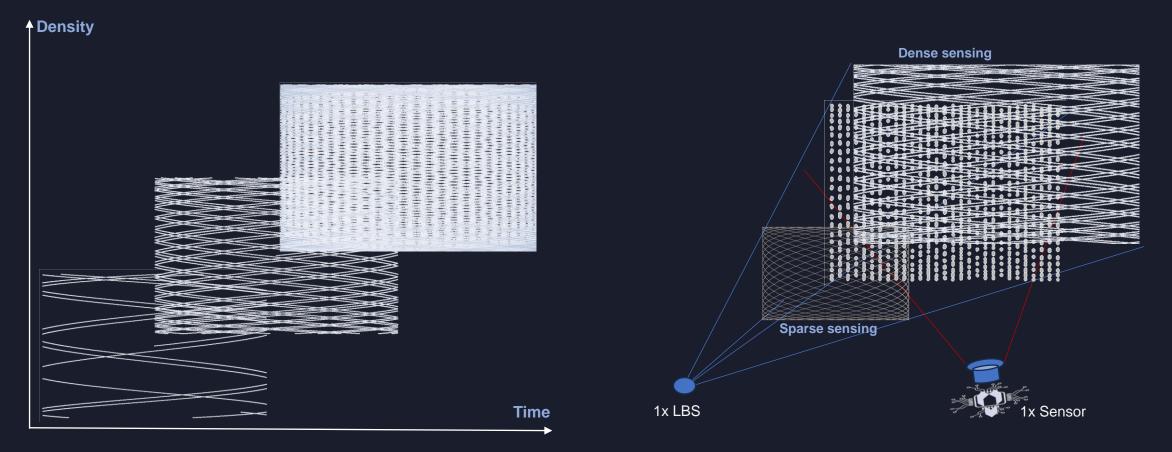
VoxelSensors approach

VoxelSensors Approach

A new sensing technology for efficiently generating the new type of data.

Reduction of power & compute
 Reduction of latency

Low-power, low-latency sensing


Low-power, low-latency, progressive processing

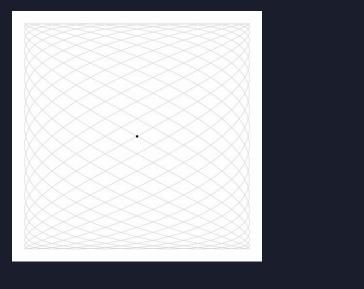
Patented Technology Fundamentals

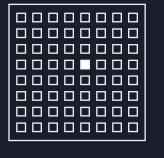
Low-latency, low-power sensing

Density vs Time

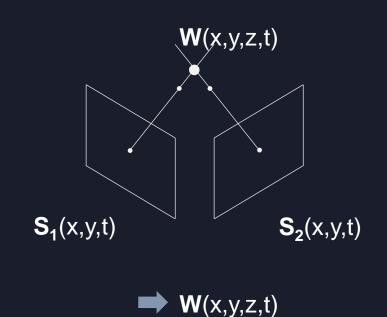
Density vs Power

Patented Switching Pixels® Fundamentals


Laser Beam Scanner


scans the world at high speed (e.g., 2D MEMS mirror)

Active Event Sensor


Single Photon Sensitive Output: dot position (x,y,t) Sample Rate: up to 100 MSps Serialized triangulation

based on $S_1 \& S_2$ generating a 3D datapoint at up to 100 Mpts/s

 \blacktriangleright S₂(x,y,t)

 \rightarrow **S**₁(x,y,t)

VoxelSensors progressive point cloud

© 2024 VoxelSensors. All Rights Reserved. Boris Greenberg - VP XR Solutions IMVC 2024

Low-power, Low-latency Sensing

Data path #2

Single Photon Active Event Sensor Work in progress (Dec 2023)

Low-power, Low-latency Sensing

RESSCAL3D: Resolution Scalable 3D Semantic Segmentation of Point Clouds https://ieeexplore.ieee.org/abstract/document/10222338

and the second sec	No prediction yet	No prediction yet
Acquisition	Traditional methods	RESSCAL3D
Acquisition Processing Traditional methods RESSCAL3D		Time >

Advanced Data Path Potential

- Due to the continuous nature of the signal streaming, we can get inline tessellation
- Object's spatial properties can be determined on the fly
- Sampling rate can assist in obliqueness of the objects
- Progressive polygon mesh due to Lissajous pattern

Get in touch

Boris Greenberg VP of XR Solutions

boris.greenberg@voxelsensors.com