

Synthetic-to-Real Domain Adaptation for Lane Detection

Noa Garnett, Roy Uziel, Netalee Efrat and Dan Levi General Motors Technical Center Israel - R&D Labs 26-Oct-2021

Presented in:

Domain adaptation from synthetic to real

Task: Lane detection

- Unsupervised Domain Adaptation (UDA)
- Semi-Supervised Domain Adaptation (SSDA)

Main idea: leverage "free" synthetic data to enrich training data with additional geometries and topologies of lanes

[Garnett et al. ICCV19]

Photorealism is difficult!

Randomized synthetic data generation

[Garnett et al. ICCV19]

Base architecture for top-view 2D lane detection

Approaches for domain adaptation for lane detection

- **1.** A novel autoencoder based approach
- 2. Image translation
- 3. Self-supervision
- 4. Feature distribution matching

Autoencoder

1

Auto-encoder based domain adaptation

Source domain X_{s} labeled sample (x_s , \hat{y}_s) S Ψ $\mathcal{L}_{task} - y_s$

Image translation for domain adaptation

- "Cycada" [Hoffman et al., ICML 2018]
(Labeled) Source domain style image

image

- Train on translated images
- Used CycleGAN [Zhu et al., ICCV 2017] to translate all training images to the target domain
- Additional Cycada enhancements did not improve results

Self-supervision for domain adaptation

- Originally proposed in [Sun et al. 2019]
- We propose viewing orientation as the self supervised task:

Results – Unsupervised domain adaptation

Method \ Dataset	tuSimple (mAP%)	Llamas (mAP%)	3DLanes (mAP%)
Fully supervised	81.1	73.2	74.5
Synthetic only	60.5	47.8	53.8
Autoencoder	67.7	56.0	57.8
Image translation	72.0	62.3	59.3
Self supervision	66.3	63.4	58.1
Combination of all three	77.1	66.0	59.5

Qualitative results before and after Domain Adaptation

DA Method: Autoencoder

DA Method: **Image Translation**

Semi-supervised domain adaptation

10% labeled target domain training images

Method \ Dataset	tuSimple (mAP%)	Llamas (mAP%)	3DLanes (mAP%)
Fully supervised	81.1	73.2	74.5
Small + synthetic only	77.5	65.5	62.0
Autoencoder	79.3	70.5	66.9
Image translation	78.4	69.1	64.2
Self supervision	77.1	70.2	64.0

- Our Autoencoder approach almost recovers full supervision accuracy on tuSimple (-1.8%) and llamas (- 2.7%) with a ten-fold labeling saving
- Combination of all methods did not improve

Conclusions

- We adjusted existing **domain adaptation** approaches for **lane detection** and tested them on the syntheticto-real problem
- We presented a **novel autoencoder-based approach** for domain adaptation in the lane detection task
- We conducted our experiments on 3 large datasets
- Our approach achieves SOTA in the SSDA setting reflecting a ten-fold saving in labeling effort with minimal performance loss
- We also introduced a new self-supervision objective for lane detection
- In the **UDA** our method is **complementary** with two existing ones and their combination reach state-of-the-art results

Thank you!

