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Conditional GAN




Image to Image Translation
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Unimodal Pix2pix, CRN, SRGAN DistanceGAN, CycleGAN, DiscoGAN,
DualGAN, UNIT, DTN, StarGAN, OST

Multimodal pix2pixHD, BicycleGAN MUNIT, Augmented CycleGAN



Paired Unpaired

—— N N




Fully Supervised: pix2pix

Conditional GAN

G* = arg mgn max L.aan(G,D)+ ALp1(G).

[Isola et al., CVPR 2017]
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Unsupervised: Circular GANs

DiscoGAN: “Learning to Discover Cross-Domain Relations with
Generative Adversarial Networks”. Kim et al. ICML'17.

CycleGAN: “Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks”. Zhu et al. arXiv:1703.10593, 2017.

DualGAN: “ Unsupervised Dual Learning for Image-to-Image
Translation”. Zili et al. arXiv:1704.02510, 2017.



Cycle-Consistent Adversarial Networks

[Mark Twain, 1903]



Cycle Consistency Loss
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See similar formulations [Yi et al. 2017], [Kim et al. 2017] [Zhu et al., ICCV 2017]




Collection Style Transfer

Photo ra]p . Monet
@ Alexei Efros

Cezanne



DistanceGAN

A pair of images of a given distance are mapped
to a pair of outputs with a similar distance

x; — x|, and |G(x;) — G(x;)|, are highly correlated.
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Benaim et al., NIPS 2017



Motivating distance correlations
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Analysis of CycleGAN’s horse to zebra results

Benaim et al., NIPS 2017



Less Supervision: Only a single image in domain A

Many unmatched + One sample x = Analogue
samples in domain B in domain A of xinB

One Shot Unsupervised Cross Domain Translation (NeurlPS 2018)
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Modeling multiple possible outputs

Possible outputs



BiCycleGAN [Zhu et al., NIPS 2017]
(c.f. INfoGAN [Chen et al. 2016])

MAD-GAN [Ghosh et al.,

CVPR 2018]
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MUNIT: Multimodal Translation
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Huang et al., ECCV 2018



Sketch to Image Translation

Sample translations

Sample translations Input GT
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Huang et al., ECCV 2018



Animal Image Translation

Input
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Huang et al., ECCV 2018



Full Content Disentanglement

Input Face Images
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"Emerging Disentanglement in Auto-Encoder Based Unsupervised Image Content Transfer", ICLR 2019
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Other Domains?

* Audio Separation: Training data consists of a set of samples of
mixed music and an unmatched set of instrumental music.

* Given a mixed sample, wish the separate the voice from
the background instrumental music.

* After mapping the audio sample to a Spectrogram, can subtract
the “background” from the “mixed” sample in “pixel space”, to get
the “voice” only sample.

* Samples at: https://sagiebenaim.github.io/Singing/

"Semi-Supervised Monaural Singing Voice Separation With a Masking Network Trained on Synthetic
Mixtures." ICASSP 2019


https://sagiebenaim.github.io/Singing/

Video to Video

e Use GAN to generate each from in a video
* Use optical flow to further constrain the generator
e Samples at: https://github.com/NVIDIA/vid2vid

"High Resolution photorealistic video to video translation.” NeurlPS 2018


https://github.com/NVIDIA/vid2vid

Many More Applications

* Many other Vision Applications: Photo Enhancement, Image Dehazing
* Medical Imaging and Biology [Wolterink et al., 2017]

* VVoice conversion [Fang et al., 2018, Kaneko et al., 2017]

* Cryptography [CipherGAN: Gomez et al., ICLR 2018]

* Robotics

* NLP: Unsupervised machine translation.

* NLP: Text style transfer.



Thank You! Questions?



