

One-shot object X

Leonid Karlinsky ORDL @ CVAR @ HRL @ IBM Research AI

Haifa Research Labs

The age of big data(sets)

Our goal is to accelerate research on large-scale video understanding, representation learning, noisy data modeling, transfer learning, and domain adaptation approaches for video. More details about the dataset and initial experiments can be found in our **technical report**. Some statistics from the latest version of the dataset are included below.

Over 90% Precision at 90% Recall on 204 brands

Land of little data – use cases ...

Brand Logos

new brands can be added on the fly

with just one or two examples

Retail products

Food

Industrial

In the land of little data

• Cool goal: to be able to train visual object X with one or few samples (and online)

How we used to do it few years ago...

Fine-Grained Recognition of Thousands of Object Categories with Single-Example Training, CVPR 2017 Leonid Karlinsky, Joseph Shtok, Yochay Tzur, Asaf Tzadok

and this is how we do it now...

LaSO: Label-Set Operations network for multi-label few-shot classification

Amit Alfassy*, Leonid Karlinsky*, Amit Aides*, Joseph Shtok, Sivan Harary Rogerio Feris, Raja Giryes, Alex M. Bronstein CVPR 2019

Δ-encoder: an effective sample synthesis method for few-shot object recognition Eli Schwartz*, Leonid Karlinsky*, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar, Rogerio Feris, Raja Giryes, Alex M. Bronstein NeurIPS 2018

RepMet: Representative-based metric learning for classification and one-shot object detection Leonid Karlinsky*, Joseph Shtok*, Sivan Harary*, Eli Schwartz*, Amit Aides, Rogerio Feris, Raja Giryes, Alex M. Bronstein CVPR 2019

∆-encoder: an effective sample synthesis method for few-shot object recognition

Eli Schwartz*, Leonid Karlinsky*,

Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar,

Rogerio Feris, Raja Giryes, Alex M. Bronstein

NeurIPS 2018

Key idea – training

- The model is a variant of an auto-encoder operating in feature space
- The network learns to encode the delta between the reference and the target image
- This delta is used to recover the target image as a (non-linear) combination of the reference and the delta

Key idea – synthesizing

- At test time we sample encoded deltas from random training image pairs
- The sampled deltas are used to create samples for new classes by combining them with the new class reference examples

Few-shot classification experiments

one-shot classification benchmarks

ours previous state-of-the-art

miniImageNet: 58.5 (previous SOA) \rightarrow 59.9 (ours) CIFAR-100: 63.4 (previous SOA) \rightarrow 66.7 (ours) Caltech-256: 63.8 (previous SOA) \rightarrow 73.2 (ours) CUB: 69.6 (previous SOA) \rightarrow 69.8 (ours)

Real vs synthetic examples ablation study

RepMet: Representative-based metric learning for classification and one-shot object detection

Leonid Karlinsky*, Joseph Shtok*, Sivan Harary*, Eli Schwartz*,

Amit Aides, Rogerio Feris,

Raja Giryes, Alex M. Bronstein

CVPR 2019

<u>**RepMet:**</u> joint training of the metric (embedding) and the class mixtures for effective DML based CLS/DET

<u>RepMet</u>: the way it works

Pooled feature vector

\leftarrow on top of an FPN detector

"Regular" detection performance

Representatives learned, shown for some of the categories

Regular detection performance, mAP(%). FPN-DCN evaluated using their original code.

	PASCAL VOC			ImageNet (LOC)		
acceptance IoU	0.7	0.5	0.3	0.7	0.5	0.3
FPN-DCN 6	74.6	83.5	85.3	46.9	55.2	60.2
ours	73.7	82.9	84.9	60.7	61.7	70.7

Few-shot Detection - experimental setup

Train

Test

At test time – replace the "known" classes representatives with embedding of the strongly overlapping proposals from the episode training images

1-shot, 5-way

Some qualitative results

few-shot detection performance

		no episode fine-tuning		with episode fine-tuning			
dataset	method	1-shot	5-shot	10-shot	1-shot	5-shot	10-shot
ImageNet-LOC	baseline-FT (FPN-DCN [7])			_	35.0	51.0	59.7
(214 unseen animal classes)	baseline-DML	41.3	58.2	61.6	41.3	59.7	66.5
	baseline-DML-external	19.0	30.2	30.4	32.1	37.2	38.1
	Ours	56.9	68.8	71.5	59.2	73.9	79.2
ImageNet-LOC	Ours - trained representatives		86.3	_			_
(100 seen animal classes)	Ours - episode representatives	64.5	79.4	82.6		—	—

Table 3. Few-shot 5-way detection test performance on ImageNet-LOC. Reported as mAP in %.

	1-shot	5-shot	10-shot
LSTD [5]	19.2	37.4	44.3
ours	24.1	39.6	49.2

Metric learning classification results

Method	MsML [21]	Magnet [24]	VMF [37]	Ours
Stanford Dogs	29.7	24.9	24.0	14.2
Oxford Flowers	10.5	8.6	4.4	11.2
Oxford Pet	18.8	10.6	9.9	6.9
ImageNet Attributes	-	15.9		13.2

Table 1: Comparison of test error with state-of-the-art DML classifier approaches on different fine-grained classification datasets. Lower is better.

LaSO: Label-Set Operations network for multi-label few-shot classification

Amit Alfassy*, Leonid Karlinsky*, Amit Aides*, Joseph Shtok, Sivan Harary Rogerio Feris, Raja Giryes, Alex M. Bronstein CVPR 2019

LaSO concept

Learning generic (label agnostic) operators for manipulating semantic content

LaSO model: schematic illustration of all the components of the proposed approach (including training losses).

Some qualitative examples – intersection

Some qualitative examples – subtraction

Some qualitative examples – union

Some qualitative examples – "tiger"

Quantitative results

Classification accuracy COCO

	64 seen classes	16 unseen classes
intersection	77	48
union	80	61
subtraction	43	14
upper bound	75	79

Retrieval accuracy COCO

	64 seen classes			16 unseen classes		
	top-1	top-3	top-5	top-1	top-3	top-5
intersection	0.7	0.79	0.82	0.47	0.71	0.78
union	0.61	0.71	0.74	0.44	0.64	0.71
subtraction	0.19	0.32	0.4	0.21	0.4	0.51
upper bound	0.56	0.72	0.76	0.56	0.75	0.81

Classification accuracy CelebA

	40 facial attributes
intersection	48
union	75
subtraction	69
upper bound	79

Learning to augment for multi-label few-shot classification

	1-shot	5-shot
B1: no augmentation	39.2	49.4
B2: basic aug.	39.2	52.7
B3: mixUP aug.	40.2	54.0
analytic intersection aug.	40.7	55.4
analytic union aug.	44.5	55.6
learned intersection aug.	40.5	57.2
learned union aug.	45.3	58.1

The team & collaborations

Team members

LEONID KARLINSKY Team lead

JOSEPH SHTOK Vision, Deep learning

MATTIAS MARDER Vision, Deep learning

ELI SCHWARTZ Vision, Deep learning

Vision, Deep learning

Collaborating with Rogerio Feris (IBM Research AI), Prof. Raja Giryes (TAU) and Prof. Alex Bronstein (Technion)

Thank you for listening!

13:50 - 14:20 - Advanced Deep Learning Tutorials Few-shot Learning – State of the Art Dr. Joseph Shtok, *IBM*

All day – "LaSO: Label-Set Operations network for multi-label few-shot classification" poster Amit Alfassy, *IBM*

