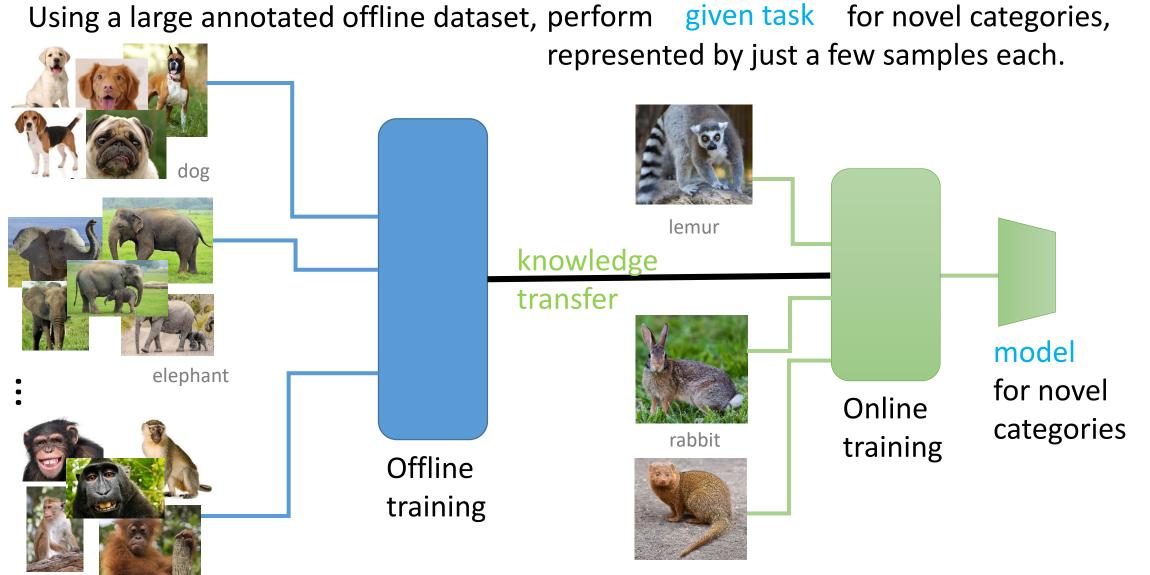


Few-shot learning

State of the Art

Joseph Shtok IBM Research Al

The presentation is available at <u>http://www.research.ibm.com/haifa/dept/imt/ist_dm.shtml</u>



monkey

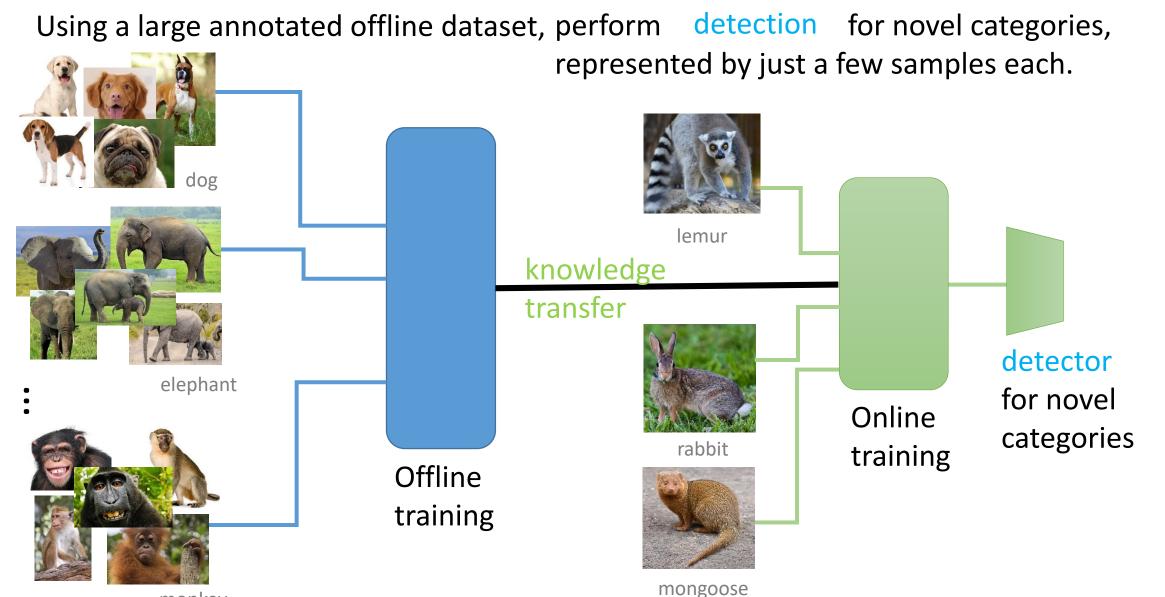
mongoose

Using a large annotated offline dataset, perform classification for novel categories,

represented by just a few samples each. dog lemur knowledge transfer classifier elephant for novel Online categories rabbit training Offline training

mongoose

monkey



monkey

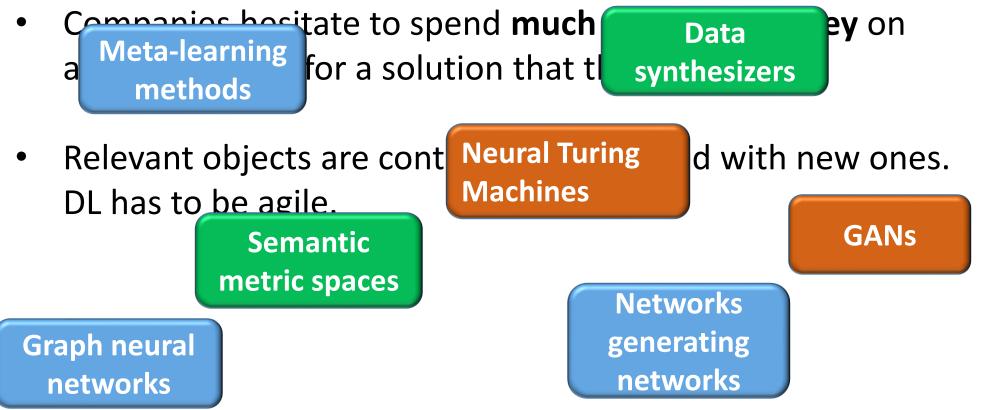
Using a large annotated offline dataset, perform regression for novel categories, represented by just a few samples each. dog lemur knowledge transfer regressor elephant for novel Online categories rabbit training Offline training

mongoose

monkey

Why work on few-shot learning?

2. IttibviolgeshæbDuhchoereræiteng-vættldgbusigæss techædegess.



Meta-learning

Learn a learning strategy to adjust well to a new few-shot learning task

> Learn to perform classification, detection, regression

Few-shot learning

Metric learning

Learn a `semantic` embedding space using a distance loss function

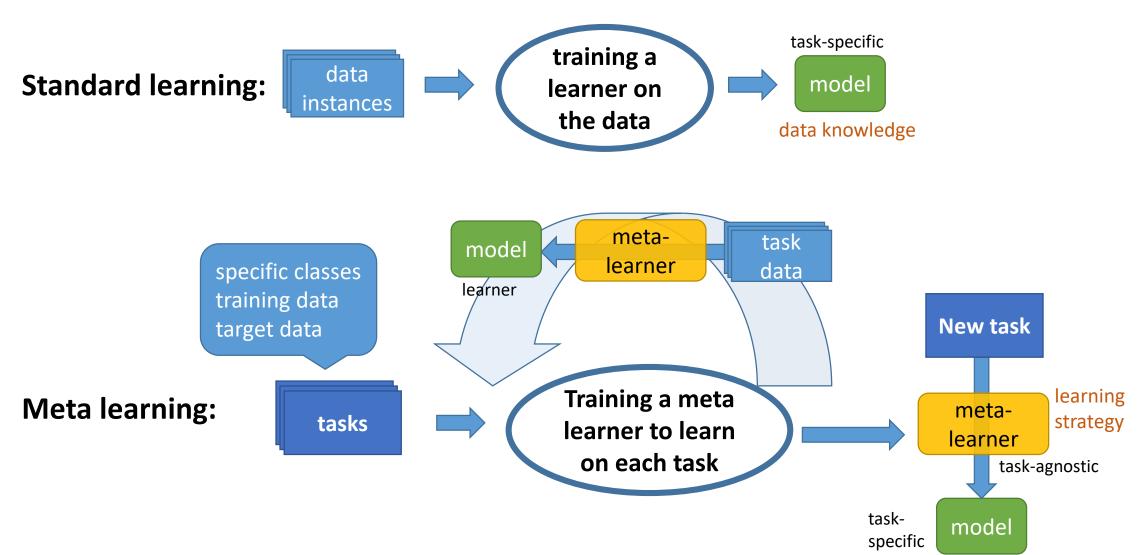
Each category is represented by just a few examples

Data augmentation

Synthesize more data from the novel classes to facilitate the regular learning

Meta-Learning

1	
	T I
_	



Recurrent meta-learners

Matching Networks in Vinyals et.al., NIPS 2016

Distance-based classification: based on similarity between the query and support samples in the embedding space (adaptive metric):

 $\hat{y} = \sum_{i} a(\hat{x}, x_i) y_i, \qquad a(\hat{x}, x_i) = similarity(f(\hat{x}, S), g(x_i, S))$ to be elaborated later

f, g - LSTM embeddings of x dependent on the support set S

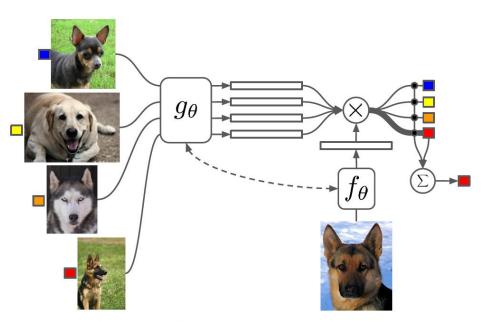


Figure 1: Matching Networks architecture reprinted from Vinyals et.al., 2016

•	Embedding space is class-ag
---	-----------------------------

LSTM attention mechanism

Memory-augmented neural ne ICML 2016

- Neural Turing Machine = diff
- Learn to predict the distribution $p(y_t|x_t, S_{1:t-1}; \theta)$
- Explicitly store the support samples in the external memory

Method	minilmageNet classification accuracy 1/5 shot	nc in N Ⅳ
Matching networks	43.56 / 55.31	01 T
		ľ

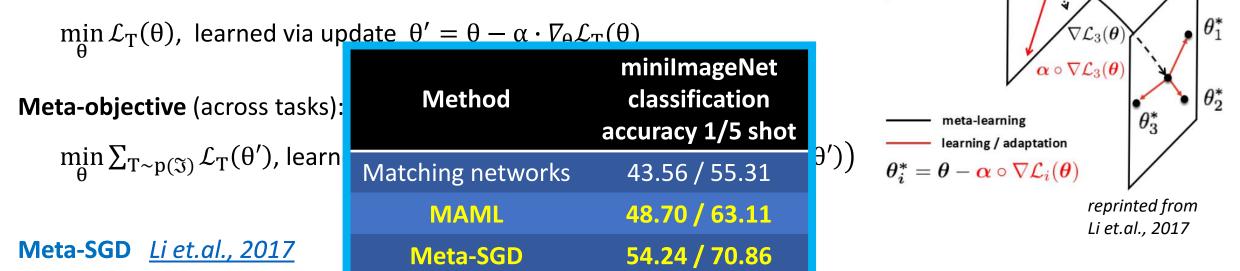
ncept of episodes: test conditions in the ining. N new categories M training examples per category one query example in {1..N} categories. Typically, N=5, M=1, 5.

Optimizers

Optimize the learner to perform well **after fine-tuning** *on the task data done by a single (or few) step(s) of Gradient Descent.*

MAML (Model-Agnostic Meta-Learning) *Finn et.al., ICML 2017*

Standard objective (task-specific, for task T):



Renteleastings the tennofisige process can continue forever, thus enabling life-long learning, and at Training not jecthe matainaizent frectors be q(p) and the lease precede on the forever for weights with the lifetion, α = update direction and scale, across the tasks.

 $abla \mathcal{L}_2(oldsymbol{ heta})$

 $\nabla \mathcal{L}_1(\boldsymbol{\theta})$

 $\boldsymbol{\alpha} \circ \nabla \mathcal{L}_1(\boldsymbol{\theta})$

Optimizers

support set for a new task

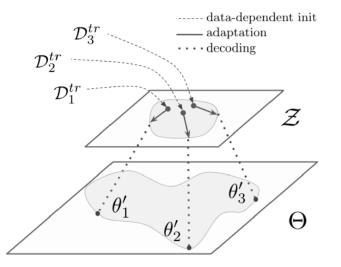
LEO Rusu et.al., NeurIPS 2018

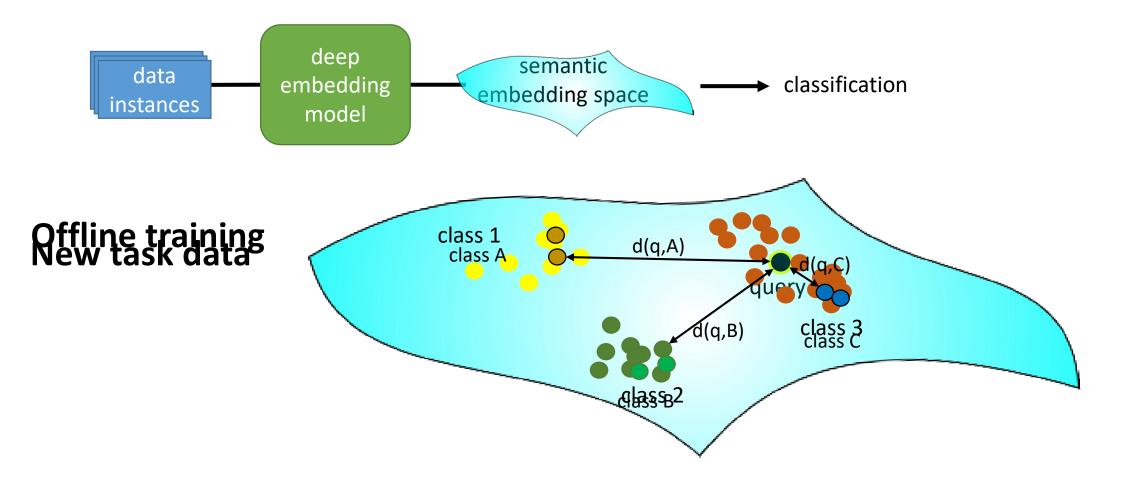
Latent Embedding Optimization: take the optimization problem from high-dim. space of weights θ to a low-dim. space, for robust Meta-Learning.

Learn a **generative distribution** of model parameters θ , by learning a stochastic **latent space** with an information bottleneck.

$$\varphi^* = \arg \min_{\varphi} \sum_{T \sim p(\mathfrak{F})} \mathcal{L}_T \left(\theta' = g_{\varphi}, (z') \right), \quad z' = z - \alpha \cdot \nabla_r \mathcal{L}_T (\theta_r),$$

minilmageNet
Method classification
accuracy 1/5 shot
Matching networks 43.56 / 55.31
MAML 48.70 / 63.11
Meta-SGD 54.24 / 70.86
LEO 61.76 / 77.59



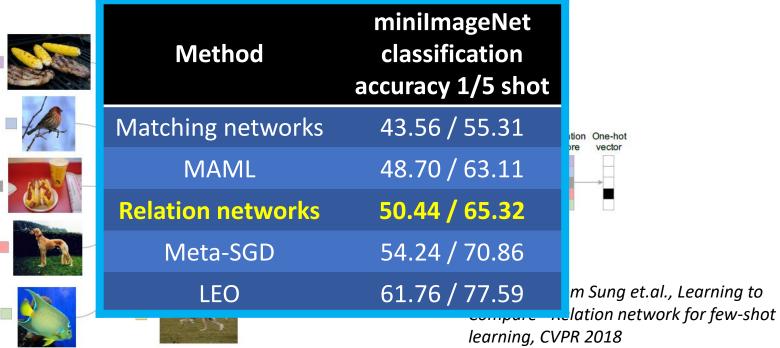


Training: achieve good distributions for offline categories **Inference:** Nearest Neightbour in the embedding space

Relation networks, Sung et.al., CVPR 2018

Use the Siamese Networks principle :

- Concatenate embeddings of query and support samples
- Relation module is trained to produces score 1 for correct class and 0 for others
- Extends to zero-shot learning by replacing support embeddings with semantic features.

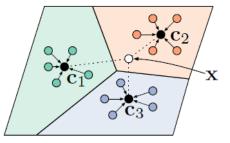


Matching Networks, Vinyals et.al., NIPS 2016

Objective: maximize the cross-entropy for the non-parametric softmax

classifier $\sum_{(x,y)} log P_{\theta}(y|x,S)$, with

$P_{\theta}(y x,S) = soft$	Method	minilmageNet classification accuracy 1/5 shot
	Matching networks	43.56 / 55.31
Prototypical Networks, Snell e	MAML	48.70 / 63.11
Each category is represented by	Relation networks	50.44 / 65.32
<i>Objective</i> : maximize the cross-	Prototypical Networks	49.42 / 68.20
probability expression:	Meta-SGD	54.24 / 70.86
$P_{\theta}(y x,C) = s_{\theta}$	LEO	61.76 / 77.59



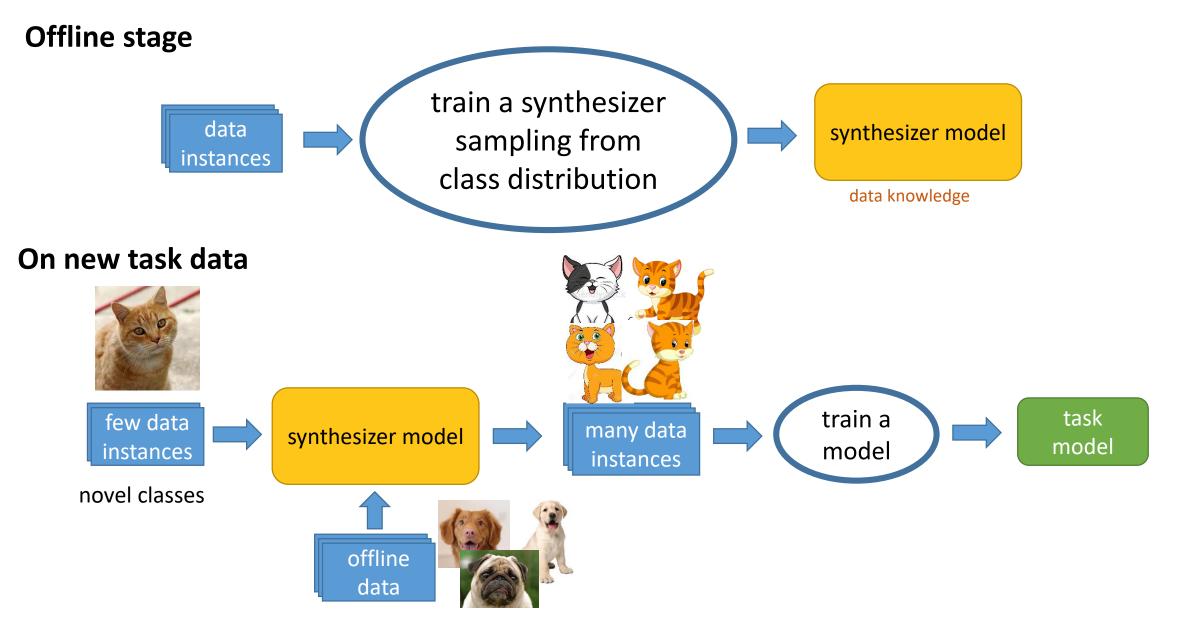
Each category is represented by a single prototype c_i .

	The second se

Large Margin Meta-Lea Regularize the cross-e	Method	minilmageNet classification accuracy 1/5 shot	
objective:	Matching networks	43.56 / 55.31	<i>a_n</i> sample
$\mathcal{L} =$	MAML	48.70 / 63.11	(hard)-negative
	Relation networks	50.44 / 65.32	otter bald eagle
RepMet: Few-shot det	Prototypical Networks	49.42 / 68.20	
 Equip a standard 	Large-margin	51.08 / 67.57	black stork
	Meta-SGD	54.24 / 70.86	
 Introduce class re 	LEO	61.76 / 77.59	partridge 0.82 partridge 0.78
 Learn an embedding space using the objective 			

 $\mathcal{L} = \mathcal{L}_{CE} + \left| \min_{j} d(E, R_{ij}) - \min_{j,k \neq i} d(E, R_{kj}) + \alpha \right|_{+}$

Sample synthesis

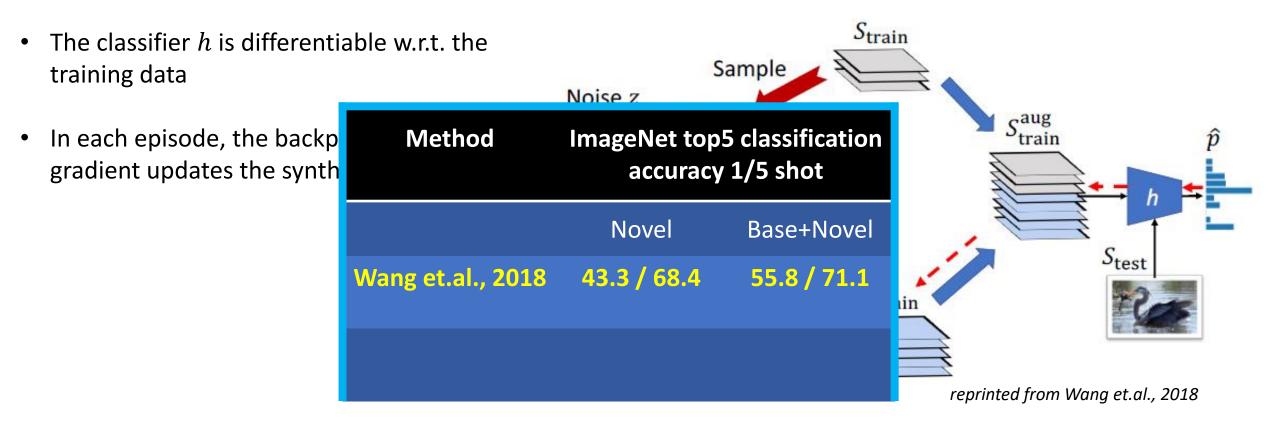


Synthesizer optimized for classification

Low-Shot Learning from Imaginary Data

Wang et.al., 2018

• The synthesizer is a part of classifier pipeline, trained end-to end



More augmentation approaches

Δ-encoder Schwartz et.al., Ne

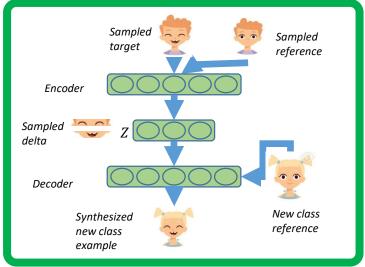
- Use a variant of autoencoor between two class sample
- Transfer class distributions

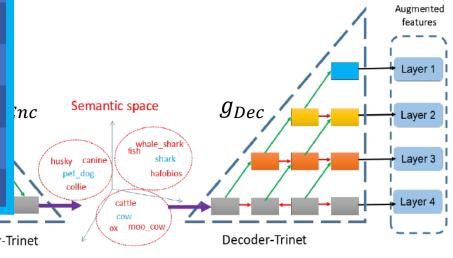
Semantic Feature Augmentat Learning, Chen et.al., 2018

- Synthesize samples by adc autoencoder's bottleneck
- Make it into a semantic sp embeddings or visual attri objective's fidelity term.

Je			
e v	Method	minilmageNet classification accuracy 1/5 shot	
	Matching networks	43.56 / 55.31	
าร	MAML	48.70 / 63.11	
	Relation networks	50.44 / 65.32	
at	Prototypical Networks	49.42 / 68.20	
	Large-margin	51.08 / 67.57	
c	Meta-SGD	54.24 / 70.86	
<	Semantic Feat. Aug.	58.12 / 76.92	Inc
n	Δ-encoder	59.9 / 66.7	hus
p ri	LEO	61.76 / 77.59	
		Lion Encoder-T	rinet

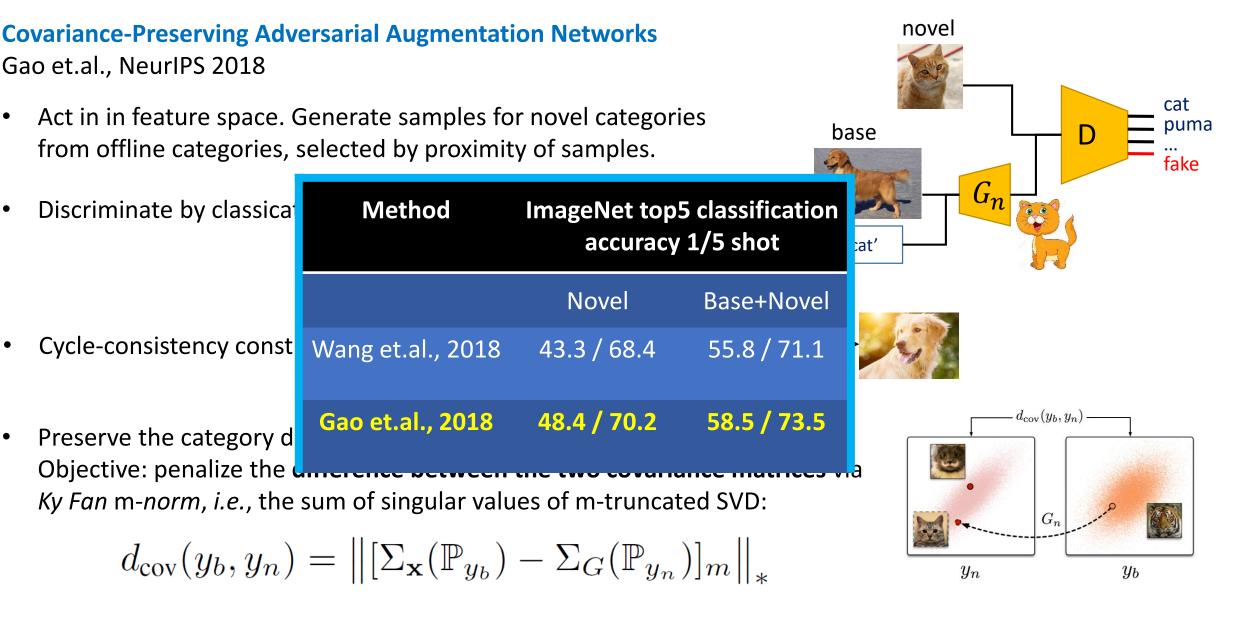
Synthesis





Augmentation with GANs

IBM



My personal view on the evolution of Machine Learning

Classic ML: One dataset, one task, one heavy training

Few-shot ML: Heavy offline training, then easy learning on similar tasks

Developing ML: continuous life-long learning on various tasks

Australopithecus robustus

-lomo habili

omo erectus

Homo sapiens neanderthalensis

Homo sapiens sapiens

THANK YOU

The presentation is available at <u>http://www.research.ibm.com/haifa/dept/imt/ist_dm.shtml</u>