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Problem statement

Using a large annotated offline dataset, perform given task for novel categories,
represented by just a few samples each.
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Problem statement

Using a large annotated offline dataset, perform classification for novel categories,
represented by just a few samples each.
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Problem statement

Using a large annotated offline dataset, perform detection for novel categories,
represented by just a few samples each.
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Problem statement

Using a large annotated offline dataset, perform regression for novel categories,
represented by just a few samples each.
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Why work on few-shot learning?
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Metric learning

space using a distance loss
function

Few-shot
learning

Learn to perform
classification,
detection, regression

Each category is
represented by just a
few examples

Data augmentation

Synthesize more data from the novel |
classes to facilitate the regular learning

Learn a ‘'semantic embedding

<|||i



Meta-Learning
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Recurrent meta-learners

Matching Networks in Vinyals et.al., NIPS 2016

Distance-based classification: based on similarity between the
query and support samples in the embedding space (adaptive
metric):

y= Z a(X, x;)y;, a(®,x;) = similarity(f(,5), g(x;,S))
:

to be elaborated later

Figure 1: Matching Networks architecture

f,g - LSTM embeddings of x dependent on the support set S reprinted from Vinyals et.al., 2016

ncept of episodes: test conditions in the
ining.

N new categories

M training examples per category

Matching networks 43.56 / 55.31 one query example in {1..N} categories.
Typically, N=5, M=1, 5.

* Embedding space is class-ag minilmageNet

e LSTM attention mechanism Method classification
accuracy 1/5 shot

Memory-augmented neural ne

ICML 2016

* Neural Turing Machine = dif

* Learn to predict the distribution p(y;|x¢, S1.6—1; 0)

* Explicitly store the support samples in the external memory



Optimizers

Optimize the learner to perform well after fine-tuning on the task data done by
a single (or few) step(s) of Gradient Descent.

MAML (Model-Agnostic Meta-Learning) Finn et.al., ICML 2017

Standard objective (task-specific, for task T):

meinLT(G), learned via update 0’ = 0 — a - Va :
minilmageNet

Meta-objective (across tasks): Method classification
accuracy 1/5 ShOt learning / adaptation

e ZTNP(S) L1(67), learn Matching networks 43.56 /5531 | )) 0 =0 —aoVL;(0)

meta-learning

MAML 48.70 / 63.11 reprinted from

Meta-SGD Ljet.al., 2017 Meta-SGD 54.24 / 70.86

Rexteleastirag/p vBetlenoh gigeddocess can continue forever, thus enabling life-long learning, and at
arginimg@drjectheenmatnifezentre tosd L g 0Pl e tith /eespen e ortrer forwrjghesitits&lization, o = update
direction and scale, across the tasks.

Liet.al., 2017


https://arxiv.org/pdf/1703.03400.pdf
https://arxiv.org/pdf/1707.09835.pdf
https://arxiv.org/pdf/1707.09835.pdf
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Optimizers

------ data-dependent init
adaptation

LEO Rusu et.al., NeurlPS 2018 Dy -
Latent Embedding Optimization: take the optimization problem from high-dim.
space of weights 0 to a low-dim. space, for robust Meta-Learning.

.. ++++decoding

Learn a generative distribution of model parameters 0,
by learning a stochastic latent space with an information bottleneck.

@* = arg min z LT(9’=g ' ‘=z _q. .U A
v T~p(3) minilmageNet
Method classification
1
stochastic accuracy 1/5 shot
encoder Matching networks 43.56 / 55.31

MAML 48.70 / 63.11
Meta-SGD 54.24 / 70.86
LEO 61.76 / 77.59

data -
instances
Relation network /

encodes distances
between elements of
support set for a new task

laten
represents



Metric Learning

deep
embedding
model

semantic
embedding space

data
instances

—p Classification
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class A O
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REMNS Haxwe

Training: achieve good distributions for offline categories
Inference: Nearest Neightbour in the embedding space
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Metric Learning

Relation networks, Sung et.al., CVPR 2018

Use the Siamese Networks principle :

Concatenate embeddings of query and support samples

Relation module is trained to produces score 1 for correct class and O for others

Extends to zero-shot learning by replacing support embeddings with semantic features.
minilmageNet

Method classification
accuracy 1/5 shot
Matching networks 43.56 / 55.31 s
MAML 48.70/ 63.11 re 5
Relation networks 50.44 / 65.32 =
Meta-SGD 54.24 / 70.86

lation network for few-shot

LEO 61.76 / 77.59 m Sung et.al., Learning to
= learning, CVPR 2018
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Metric Learning

Matching Networks, Vinyals et.al., NIPS 2016
Objective: maximize the cross-entropy for the non-parametric softmax

classifier 2.y y)logPg (ylx,S), with

Py(y|x,S) = so minilmageNet
o / Method classification

accuracy 1/5 shot
Matching networks 43.56 / 55.31

Prototypical Networks, Snell e MAML 48.70 / 63.11
Each category is represented b Relation networks 50.44 / 65.32
o o Prototypical 49.42 / 68.20
Objective: maximize the cross-e Networks Each category is represented

. : by a single prototype c; .
probability expression: Meta-SGD 54.24 / 70.86 ‘

Py (ylx, C)=s¢ LEO 61.76 / 77.59
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Metric Learning
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. . Distances for triplet loss
minilmageNet P

Method classification
Regularize the cross-¢ accuracy 1/5 shot [
objective: Matching networks 43.56 / 55.31

[ = MAML 48.70 / 63.11
Relation networks 50.44 / 65.32

Prototypical 49.42 / 68.20
Networks

Large-margin 51.08 / 67.57
Meta-SGD 54.24 / 70.86

LEO 61.76 / 77.59
 Learn an embedding space using the objective

Large Margin Meta-Lec

positive

bald eagle

RepMet: Few-shot det
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* |ntroduce class re
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L = Lep + |min; d(E, R;j) —min; 40 d(E, Ryj) + @l



Sample synthesis

Offline stage

data ‘

On new task data

train a synthesizer
sampling from
class distribution

many data

few data :
‘ synthesizer model ‘
instances instances

novel classes t

offline
data

‘ synthesizer model

data knowledge

train a
- @D

task

model
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Synthesizer optimized for classification
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Low-Shot Learning from Imaginary Data
Wang et.al., 2018

* The synthesizer is a part of classifier pipeline, trained end-to end

* The classifier h is differentiable w.r.t. the

training data | Sample
* In each episode, the backp Method ImageNet top5 classification
gradient updates the synt accuracy 1/5 shot

Novel Base+Novel

Wang et.al., 2018 43.3 /68.4 55.8/71.1

reprinted from Wang et.al., 2018



More augmentation approaches
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Synthesis

A-encoder Schwartz et.al., N¢ —
minilmageNet

Method classification
accuracy 1/5 shot

Matching networks 43.56 /55.31

Sampled "~ ~ )

Sampled
target

-~
< < =  reference

Y
Encoder [O O OOO]

e Use avariant of autoenco«
between two class sample

somied 2 (D)

delta
e Transfer class distributions MAML 48.70/63.11 - [OOCVDOO}J-:@
Relation networks 50.44 / 65.32 Synthesized s
Prototypical 49.42 / 68.20 s
Semantic Feature Augmentat Networks

Learning, Chen et.al,, 2018 Large-margin 51.08 / 67.57 A
+ Synthesize samples by adc Meta-SGD 54.24 / 70.86 4 : Lo
autoencoder’s bottleneck Bl loN=F |W-\T]=3 58.12 / 76.92 nc Sema“t__icspéf____ gDec// L, E s i
o _ A-encoder 59.9 /66.7 sy e 4 | Lyt |
* Make it into a semantic sp \ g N pabios/ // / / -I ] l
embeddings or visual attri — 61.76 /77.59 e e - L Layerd |
_______ I UH.II:T\UO_CUUS{',-';! —_—————— !

ObjECtive’S flde“ty term. b I Encoder-Trinet / \ox Decoder-Trinet T
\



Augmentation with GANs

Covariance-Preserving Adversarial Augmentation Networks
Gao et.al., NeurlPS 2018

"llil

Act in in feature space. Generate samples for novel categories base \: E,itma
from offline categories, selected by proximity of samples. - /: Foke

Discriminate by classica Method ImageNet top5 classification | ez @ b P
accuracy 1/5 shot

Novel Base+Novel

Cycle-consistency constRIWERT-E= a1 BbLok kv R DA 1! 55.8/71.1

Preserve the category d

Gao et.al., 2018 48.4/70.2 58.5/73.5 o (Yo U) ——)

Objective: penalize the € SO amoaain: :
Ky Fan m-norm, i.e., the sum of singular values of m-truncated SVD:

dcov(yb;yn — H ’yb) o EG(P%L)]?’TLH* ‘ Yn

Yb



My personal view on the evolution of Machine
Learning

Classic ML: One dataset, one task, one heavy training

Few-shot ML: Heavy offline training, then easy learning on
similar tasks

Developing ML: continuous life-long learning on various tasks



THANK YOU
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