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Supervised Learning; {Xi, yi} =2F
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Speech Recognition (Sutskever et al.)

(IBM, Google, MSFT & Baidu)



What'’s still impossible / limited ?

 Human-Machine communication, dialog systems (‘Chatbots’)
* Answering free-form questions by memorizing the Web
» Teaching robots to learn everything.

* Instead of requiring millions of {X, y} samples, maybe learn to transfer
knowledge between domains, modalities.

* This talk: Learning to transfer samples between visual domains



Latest Trends

1. Style Transfer (Gatys et al.)
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Latest Trends
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1. Style Transfer (Gatys et al.)
* Replaces statistics/texture given an exemplar

Not semantic




Latest Trends

3. Supervised GANs
* “Image-to-Image Translation with

Conditional Adversarial Nets” Isola et al.
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2. Domain adaptation
* “Domain-adversarial training of neural networks’

Not generative

1. Style Transfer (Gatys et al.)
* Replaces statistics/texture given an exemplar

Not semantic




Pix2pix (Isola et al.)

Labels to Street Scene Labels to Facade BW to Color

Fully Supervised: Million of (Si = Ti) pairs



Vision applications that require Unsupervised
Image Transfer Methods

Day = Night Bag = Shoe World =» VR

NVIDIA SKT Brain Oculus



Airsimm Transfer Learning

(Microsoft)

Playing for Data: Ground Truth from Computer Games
(Intel)

Playing for Data: Ground<Truth from ComputerGames

Yan Duan et al. OpenAl

Tzeng et al. Berkley




True Al needs no explicit supervision

Bag of face images Bag of Emoji



Visual Analogies: Solving the Cartooning task

* Transfer a sample in domain S to its corresponding sample in domain T

e Without any correspondences

* |s this even possible?




Experts
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Domain Transfer Problem

Given two related domains S, T
Learn a generative G: S = T,
Such that for some f:SUT — R¢,

f(G))~ f(x)

* Unsupervised
* Samples are unlabeled, eitherin Sor T
* No pairs of samples are given, e.g. {(s;,t;) | s; = t;}
* f is asymmetric/unadpated, i.e. was not trained in T
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Background: Generative Adversarial Networks
(Goodfellow et al.)

Learn networks D, G together.
D identifies which images are real and which created by G

G tries to fool D

Realworld —— sample [
images

00 :
ss0

D >a Discriminator

Fake

1 Generator [——{ Sample [~
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D is ternary:

class 1: authentic emoji
class 2: emoji created by G for an emoji input
class 3: emoji created by G for a photograph



Domain Transfer Network
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Evaluation of the DTN

1. Digits : SVHN = MNIST

2. Faces: Faces 2 Emoji



f := ConvNet(S)—>{0,..,9}

Table 2: Domain adaptation from
SVHN to MNIST

Method Accuracy

S is SVHN \;is MNIST
~— 2§ 2m a7slal5l2
7 [543 i

SA Fernando et al. (2013) 59.32%
DANN Ganin et al. (2016) 73.85%
DTN on SVHN transferring 84.44%
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Zero Shot

DTN s GAN
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Table 3: Comparison of recognition accuracy of the digit 3 as generated in MNIST

Method Accuracy of ‘3
DTN 94.67%
‘3” was not shown in s 93.33%
‘3” was not shown in t 40.13%
‘3” was not shown in both s or t 60.02%
‘3’ was not shown in s, t, and during the training of f 4.52 %




Input Manual

Faces =2 Emoji

e ~5-10 minutes for an expert
* Limited selection of ‘templates’
e Cartooning an open problem




Input Manual DTN

Input Manual DTN

Input Manual DTN

Input Manual DTN




How identifiable are those generations?

Table 4: Comparison of retrieval accuracy out of a set of 100,001 face images for either manually
created emoji or the one created by the DTS network.

Measure Manual Emoji by DTN
Median rank 16311 16 —
Mean rank 27,992.34 53547
Rank-1 accuracy 0% 22.88%

Rank-5 accuracy 0% 34.75%




(No Cherry-Picking)
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Are we being totally faithful to the T?

DTN

Emoji



The target domain is generated by an engine

3D Avatars 3D Computer Graphics

Engine: configuration — image



Domain Transfer Revisited

Given two related domains S, T
Learn a generative G: S — T,

Such that for some f:SUT — R%,
f(G(x)) is close to f(x)

And for a given engine E, there exist a configuration u
such that G(x) = E(u)



Tied Output Synthesis (TOS)

f(Gix))

efefGix)))

Unsupervised Creation of Parameterized Avatars; In submission



TOS
3D Avatar

DTN TOS TOS
glf(x)) elclelf(x)))
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What’s ahead?

e Unsupervised (Transfer) Learning in new domains

Knowledge 2
(Data 2 + Expert 2)

.
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Knowledge 1
(Data 1 + Expert 1)

Knowledge 4
(Data 4 + Expert 4)

Knowledge 3
(Data 3 + Expert 3)




Thank you

{yaniv, adampolyak, wolf}@fb.com
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