

Deep Neural Networks in Embedded and Real Time Systems

www.ceva-dsp.com

Deep Learning Neural Networks

- Deep Learning
 - A family of neural network methods using high number of layers
 - Focused on feature representations
 - Convolutional Neural Networks (CNN)
 - Most popular deep learning neural network method
 - Benefits
 - 1. Best recognition quality (vs. alternative recognition algorithms)
 - 2. Re-trainable without code changes (implemented once and used many times)

Augmented Reality / Virtual Reality

Training is for everyone

- Free available training frameworks:
 - Caffe The most popular, developed by the Berkeley Vision and Learning Center
 - TensorFlow Open source software library for numerical computation using data flow graphs supported by Google
- Training is done offline
- Training and designing a network became an expertise
- There are many ways to design a network and train it
- Large variety in network structures (GoogLeNet, AlexNet, VGG, NIN)
- Many open source examples are available (Caffe Model Zoo)

RT classification requires knowledge

- There are many ways to design a CNN
 - Optimizations are usually done to a specific network
 - There is a strong requirement for flexible implementations
 - Modifying the network
 - Changing network characteristics
- Porting proprietary networks consumes time
 - Special programing knowledge (intrinsic, assembly)
 - Specific experience in the embedded platform (instructions, hardware capabilities)
 - Optimized solutions are not flexible for changes

Long "Time To Market"

Neural network embedded challenges

- Very high bandwidth consuming
 - Between Layers of data transfer in and out the DDR
 - AlexNet 12 MB between layers data transfer (16-bit precision single execution)
 - Convolution and Fully Connected data weights from DDR
 - AlexNet 243 MB weights in floating point precision
 - Processing more than one ROI with the same network
- Required conversion from floating point to fixed point
 - Training results are in floating point while low power and area platforms prefer fixed point calculations to reduce power and area
- The number of operations can reach more than a mega operations per layer especially in the convolution layer
- Internal memory size limitation on embedded platform

What can be done? (1)

Reducing bandwidth

- In the convolution layer, each output is calculated by the same inputs
 - Weights matrix are shared between output results in the same map (in order not to load the weights more than once)
 - The input data can be reused to avoid useless transactions from DDR

What can be done? (2)

Maximum multiply accumulate utilization

- Differentiating between large inputs to small input maps and the amount from each type
- ► Large size maps $X_{c,i,j}^{l} = \sum_{c=0}^{C} \sum_{i=0}^{H} \sum_{j=0}^{W} W_{c,m,n}^{l} X_{c,i+m,j+n}^{l-1}$
- ► Many maps with small size (last layers) $X_{c,i,j}^l = \sum_{i=0}^H \sum_{j=0}^W \sum_{c=0}^C W_{c,m,n}^l X_{c,i+m,j+n}^{l-1}$

What can be done? (3)

Overcome small internal memory size

- Trying to preserve the principle of "All inputs must be in the internal memory" by tile division
- Dividing all input maps to same tile size

What can be done? (3)

- Using compression algorithms and prior knowledge to reduce bandwidth to and from the external memory
 - It is known there is a lot of redundancy in the network data
 - Can be done offline
 - Example
 - AlexNet fully connected BW, before compression, can be reduced to 6 MBytes
- Using dedicated and smart instructions for large scale operations such as convolutions
 - Example: CEVA vector processing by CEVA-XM4 DSP core
 - Includes dedicated instructions which help with CNN acceleration

CEVA Deep Neural Network Library

- General acceleration library for deep neural network algorithms especially convolution neural network (CNN)
- Provides offline tool for network generator
 - Converts from offline to real-time network representation
 - Converts floating point trained network weights to fixed point weights with small degradation
 - Optimizes the initial network structure to real time execution
- Real-time initialization and execution of any designed network
- Supports single layer acceleration such as:
 - Convolution, pooling, softMax, normalization, activation and fully connected

Programmer Flow for CNN Acceleration (1)

Offline training

- Network developer uses proprietary training process
 - In-house framework
 - Open source frameworks
- Training output :
 - Network weights in floating point precision
 - Final network defined structure

Programmer Flow for CNN Acceleration (2)

CEVA Network Generator

- Converts weights and network structure definition to real-time execution on CEVA-XM4
 - Floating point to fixed point network weights
 - Network optimizations

Programmer Flow for Fast CNN Acceleration (1)

Programmer interface : Network creation and initialization (done once)

CDNN context creation

/* create and initialize the CEVA deep neural network context */
status = CDNNCreate(pCDNNHandle);

Memory buffers description (output and input)

cdnn_databuffer_parameters_t imageToCDNNStructIn; imageToCDNNStructIn.nInputs = 1; imageToCDNNStructIn.width = 400; imageToCDNNStructIn.height = 400; imageToCDNNStructIn.nChannels = 1; imageToCDNNStructIn.dataOrder = E_CONN_MEMORY_DATAORDER_NHWC; imageToCDNNStructIn.dataType = E_CDNN_PRECISION_16BIT; imageToCDNNStructIn.dataType = E_CDNN_DATATYPE_S16; cdnn_datab inputImage = CDNNCreateDataBuffer(*pCDNNHandle, &imageToCDNNStructIn);

Network creation

intNetworkParams_st networkParam; networkParam.pInputBuffer = inputImage; networkParam.pOutputBuffer = *outputImage; networkParam.outputLayerId = 11; networkParam.networkMode = E_CONN_NETWORK_MODE_SLIDINGWINDOW; networkParam.pNetwork = networkFilename; cdnn_network network = CONNCreateNetworkFromFile(*pCDNNHandle, &networkParam);

Network initialization

/* init CDNN context */
status |= CDNNInitialize(*pCDNNHandle);

Programmer Flow for Fast CNN Acceleration (2).

Programmer interface : Network execution (streaming)

Update network input memory buffer

cdnn_datab inputImage = CDNNCreateDataBufferFromHandle(pCDNNHandle, &imageToCDNNStructIn, inImg.data); s32status |= CDNNNetworkUpdateParameter(network, (cdnn_reference)inputImage, 0);

Execution

/* classify the image */
s32status |= CDNNNetworkClassify(pCDNNHandle, network);

Query for results

s32status |= CDNNQueryDataBuffer(pOutputLayer, E_CDNN_BUFFER_ATTRIBUTE_WIDTH, &width, sizeof(width)); s32status |= CDNNQueryDataBuffer(pOutputLayer, E_CDNN_BUFFER_ATTRIBUTE_HEIGHT, &height, sizeof(height)); s32status |= CDNNQueryDataBuffer(pOutputLayer, E_CDNN_BUFFER_ATTRIBUTE_INPUTS, &inputNumber, sizeof(inputNumber)); s32status |= CDNNQueryDataBuffer(pOutputLayer, E_CDNN_BUFFER_ATTRIBUTE_CHANNELS, &channels, sizeof(channels)); s32status |= CDNNAccessDataBuffer(pOutputLayer, &pOutData);

Update OpenCV data structures

Mat resultMat(channels, inputNumber, CV_64F, pOutData);

Programmer Flow for Fast CNN Acceleration (3).

Programmer interface : Network release

Release all open CDNN memory object created

status |= CDNNReleaseDataBuffer(pCDNNHandle, &outputImage);

Release the CDNN Network

status |= CDNNReleaseNetwork(pCDNNHandle, &network);

Release CDNN

status |= CDNNRelease(pCDNNHandle);

CNN Usage Flow with Caffe & CDNN

Thank You

www.ceva-dsp.com