Deep Neural Networks in Embedded and Real Time Systems
Deep Learning Neural Networks

- Deep Learning
 - A family of neural network methods using high number of layers
 - Focused on feature representations
 - Convolutional Neural Networks (CNN)
 - Most popular deep learning neural network method
 - Benefits
 1. Best recognition quality (vs. alternative recognition algorithms)
 2. Re-trainable without code changes (implemented once and used many times)
Training is for everyone

- Free available training frameworks:
 - **Caffe** – The most popular, developed by the Berkeley Vision and Learning Center
 - **TensorFlow** – Open source software library for numerical computation using data flow graphs supported by Google

- Training is done offline
- Training and designing a network became an expertise
- There are many ways to design a network and train it
- Large variety in network structures (GoogLeNet, AlexNet, VGG, NIN)
- Many open source examples are available (Caffe Model Zoo)
RT classification requires knowledge

- There are many ways to design a CNN
 - Optimizations are usually done to a specific network
 - There is a strong requirement for flexible implementations
 - Modifying the network
 - Changing network characteristics
- Porting proprietary networks consumes time
 - Special programing knowledge (intrinsic, assembly)
 - Specific experience in the embedded platform (instructions, hardware capabilities)
 - Optimized solutions are not flexible for changes

Long “Time To Market”
Neural network embedded challenges

- Very high bandwidth consuming
 - Between Layers of data transfer in and out the DDR
 - AlexNet – 12 MB between layers data transfer (16-bit precision single execution)
 - Convolution and Fully Connected data weights from DDR
 - AlexNet – 243 MB weights in floating point precision
 - Processing more than one ROI with the same network

- Required conversion from floating point to fixed point
 - Training results are in floating point while low power and area platforms prefer fixed point calculations to reduce power and area

- The number of operations can reach more than a mega operations per layer especially in the convolution layer

- Internal memory size limitation on embedded platform
What can be done? (1)

- **Reducing bandwidth**
 - In the convolution layer, each output is calculated by the same inputs
 - Weights matrix are shared between output results in the same map (in order not to load the weights more than once)
 - The input data can be reused to avoid useless transactions from DDR
What can be done? (2)

- **Maximum multiply accumulate utilization**
 - Differentiating between large inputs to small input maps and the amount from each type
 - Large size maps - $X_{c,i,j}^l = \sum_{c=0}^{C} \sum_{i=0}^{H} \sum_{j=0}^{W} W_{c,m,n}^l X_{c,i+m,j+n}^{l-1}$
 - Many maps with small size (last layers) - $X_{c,i,j}^l = \sum_{i=0}^{H} \sum_{j=0}^{W} \sum_{c=0}^{C} W_{c,m,n}^l X_{c,i+m,j+n}^{l-1}$
What can be done? (3)

- Overcome small internal memory size
 - Trying to preserve the principle of “All inputs must be in the internal memory” by tile division
 - Dividing all input maps to same tile size

Convolution
What can be done? (3)

- Using compression algorithms and prior knowledge to reduce bandwidth to and from the external memory
 - It is known there is a lot of redundancy in the network data
 - Can be done offline
 - Example
 - AlexNet fully connected BW, before compression, can be reduced to 6 MBytes

- Using dedicated and smart instructions for large scale operations such as convolutions
 - Example: CEVA vector processing by CEVA-XM4 DSP core
 - Includes dedicated instructions which help with CNN acceleration
CEVA Deep Neural Network Library

- General acceleration library for deep neural network algorithms especially convolution neural network (CNN)

- Provides offline tool for network generator
 - Converts from offline to real-time network representation
 - Converts floating point trained network weights to fixed point weights with small degradation
 - Optimizes the initial network structure to real time execution

- Real-time initialization and execution of any designed network

- Supports single layer acceleration such as:
 - Convolution, pooling, softMax, normalization, activation and fully connected
Offline training

- Network developer uses proprietary training process
 - In-house framework
 - Open source frameworks

- Training output:
 - Network weights in floating point precision
 - Final network defined structure

Network structure and parameters → Training data base and reference

Caffe

Final network structure
Trained network weights
Optional mean image

Back error propagation
Programmer Flow for CNN Acceleration (2)

CEVA Network Generator

- Converts weights and network structure definition to real-time execution on CEVA-XM4
- Floating point to fixed point network weights
- Network optimizations

Diagram:
- Final network structure
- Trained network weights (floating point)
- Optional mean image
- Optimized CEVA network structure
- Fixed point rearranged network weights
- Fixed point mean image
Programmer Flow for Fast CNN Acceleration (1)

Programmer interface: Network creation and initialization (done once)

- CDNN context creation

```c
/* create and initialize the CEVA deep neural network context */
status = CDNNCreatet(pCDNNHandle);
```

- Memory buffers description (output and input)

```c
cdnn_databuffer_parameters_t *imageToCDNNstructIn;
imageToCDNNstructIn.nInputs = 1;
imageToCDNNstructIn.width = 400;
imageToCDNNstructIn.height = 400;
imageToCDNNstructIn.nChannels = 1;
imageToCDNNstructIn.dataOrder = E_CDNN_MEMORY_DATAORDER_NHWC;
imageToCDNNstructIn.depth = E_CDNN_PRECISION_16BIT;
imageToCDNNstructIn.dtype = E_CDNN_DATATYPE_S32;
cdnn_inputImage = CDNNCreatetDataBuffer("pCDNNHandle, &imageToCDNNstructIn);
```

- Network creation

```c
int networkParams_st networkParams;
networkParams.pInputBuffer = inputImage;
networkParams.pOutputBuffer = *outputImage;
networkParams.outputLayerId = 11;
networkParams.mode = E_CDNN_NETWORK_MODE SLIDINGWINDOW;
networkParams.network = pNetworkFilename;
cdnn_network network = CDNNCreatenetworkFrontFile("pCDNNHandle, &networkParams);
```

- Network initialization

```c
/* init CDNN context */
status |= CDNNInitialize("pCDNNHandle);
```
Programmer Flow for Fast CNN Acceleration (2).

Programmer interface: Network execution (streaming)

- Update network input memory buffer

```c
cdn_data inputImage = CDNNCreateDataBufferFromHandle(pCDNHandle, &imageToCDNNStructIn, inImg.data);
s32 status |= CDNNNetworkUpdateParameter(network, (cdn_reference)inputImage, 0);
```

- Execution

```c
"/classify the image */
s32 status |= CDNNNetworkClassify(pCDNHandle, network);
```

- Query for results

```c
s32 status |= CDNNQueryDataBuffer(pOutputLayer, E_CONN_BUFFER_ATTRIBUTE_WIDTH, &width, sizeof(width));
s32 status |= CDNNQueryDataBuffer(pOutputLayer, E_CONN_BUFFER_ATTRIBUTE_HEIGHT, &height, sizeof(height));
s32 status |= CDNNQueryDataBuffer(pOutputLayer, E_CONN_BUFFER_ATTRIBUTE_INPUTS, &InputNumber, sizeof(InputNumber));
s32 status |= CDNNQueryDataBuffer(pOutputLayer, E_CONN_BUFFER_ATTRIBUTE_CHANNELS, &channels, sizeof(channels));
s32 status |= CDNNAccessDataBuffer(pOutputLayer, &pOutData);
```

- Update OpenCV data structures

```c
Mat resultNet(channels, inputNumber, CV_64F, pOutData);
```
Programmer Flow for Fast CNN Acceleration (3).

Programmer interface : Network release

- Release all open CDNN memory object created

  ```c
  status |= CDNNReleaseDataBuffer(pCDNNHandle, &outputImage);
  ```

- Release the CDNN Network

  ```c
  status |= CDNNReleaseNetwork(pCDNNHandle, &network);
  ```

- Release CDNN

  ```c
  status |= CDNNRelease(pCDNNHandle);
  ```
CNN Usage Flow with Caffe & CDNN

- Network Structure
- Floating-point Network + Weight
- Network Weights
- Image Database
- Training Stage (Offline)
- Caffe

- CEVA Network Generator

- Detection Stage (real-time)

- Fixed-Point Customized Network + Weights

- Input
- Hidden
- Output

- "DOG"
Thank You